what structure is the start of the lower respiratory tract?

Answers

Answer 1

The windpipe (trachea) and the bronchi, bronchioles, and alveoli found inside the lungs are among the principal channels and structures of the lower respiratory tract.

Each bronchus splits into secondary and tertiary bronchi deep inside the lungs, which continue to branch to smaller airways known as the bronchioles. The larynx, the trachea, the bronchi, and the lungs make up the lower tract.

Beginning at the border of the larynx, the trachea separates into two bronchi before continuing into the lungs. Smaller bronchioles are created as the bronchi divide, and these bronchioles branch in the lungs to create airways. The nose and mouth are the beginning of the respiratory system, which continues through the airways and lungs.

Learn more about respiratory Visit: brainly.com/question/24653210

#SPJ4


Related Questions

what is the thinning ozone that occurs?

Answers

Answer:

huh

Explanation:

I think gas shooting through your bum and cars gas ?

Ozone depletion occurs when chlorofluorocarbons (CFCs) and halons gases formerly found in aerosol spray cans and refrigerants are released into the atmosphere

the enzyme rubisco has more than one activity. because of this, most plants also perform , which consumes oxygen and liberates carbon dioxide. this process can lower the net benefit from photosynthesis is called

Answers

The process you are referring to is called photorespiration. It is a natural process that occurs in plants when the enzyme rubisco, which is involved in the process of photosynthesis.

What is  photosynthesis ?

Photosynthesis is the process by which green plants, algae, and some bacteria convert light energy from the sun into chemical energy in the form of organic compounds, such as glucose. This process takes place in specialized organelles called chloroplasts, which contain the pigment chlorophyll. Chlorophyll absorbs light energy from the sun, which is then used to drive a series of chemical reactions that convert carbon dioxide and water into glucose and oxygen.

Photosynthesis is essential for life on Earth, as it is the basis of most food chains and provides the oxygen that is necessary for the survival of many organisms, including humans. In addition, photosynthesis plays a critical role in regulating the Earth's atmosphere, as it removes carbon dioxide from the atmosphere and releases oxygen. Photosynthesis is one of the most important biochemical processes on Earth and is the foundation of all life on the planet.

To know more about Photosynthesis visit :

https://brainly.com/question/29775046

#SPJ1



Describe three examples of specialization in the nervous system of animal

Answers

Examples of specialization of nervous system: (1) the neurons are the specialized cells that transmit signals; (2) the glial cells perform the function of processing the information; (3) the nervous system controls the autonomous and non-autonomous functions separately.

The nervous system is the master regulator of the animal's and humans' body that regulates each and every function. The system is comprised of the brain, spinal cord and the specialized cells called neurons.

Glial cells are also known by the name neuroglia. They are a part of the central nervous system and provide structural as well as physiological support to the neurons. There are various types of glial cells like:  oligodendrocytes, astrocytes, microglia, and ependymal cells.

To know more about nervous system, here

brainly.com/question/29355295

#SPJ4

What phenotype would be expected in balanced translocation heterozygotes in the absence of position effects?

Answers

Phenotype would be expected in balanced translocation heterozygotes in the absence of position effects would be expected to be normal.

In the absence of position effects, the phenotype would be anticipated to be normal in balanced translocation heterozygotes, where there is a rearrangement of genetic material between two non-homologous chromosomes with no loss or gain of genetic material.

This is because the translocation changes the position of genes in the genome rather than their quantity or structure. If the translocation breakpoint happens within a gene, it may disrupt its function or result in the formation of a fusion protein with altered activity.

Furthermore, position effects can arise when a translocation breakpoint disrupts gene expression regulation by changing the local chromatin structure.

Learn more about Phenotype

https://brainly.com/question/20730322

#SPJ4

which of these is the second of the three stages of cell signaling?

Answers

The second of the three stages of cell signaling is the transduction stage.

Cell signaling is the process by which cells communicate with one another. It occurs in response to a variety of stimuli, including changes in the environment, physiological changes, and developmental cues. This communication is necessary for cells to coordinate their activities and maintain the proper functioning of an organism's tissues and organs.

The three stages of cell signaling are as follows:

The cell receives a signal in the first stage of cell signaling, called reception. It is then transmitted to the second stage, known as transduction. It is only in the final stage of cell signaling, known as response, that the cell's response to the signal is determined. This response could be a change in gene expression or an alteration in metabolic activity, among other things.

In the case of cell signaling, a signal is converted from one form to another during the transduction phase. The signal is typically converted from a chemical signal to an electrical signal, which is then transmitted through the cell to produce a response.

It usually involves the activation of intracellular signaling pathways that involve various signaling molecules, such as second messengers, enzymes, and kinases. Transduction typically results in a cascade of events that ultimately culminates in the cell's response.

For more such questions on cell signaling, click on:

https://brainly.com/question/28499832

#SPJ11

The probable question may be:

which of these is the second of the three stages of cell signaling?

a) Response Stage

b) Reception Stage

c) Transduction Stage

who discovered the basic principles of inheritance using traits of pea plants?

Answers

it was Gregor Mendel!!!

if a stimulus was applied in the middle of a nerve roughly halfway between the cell body and the axon terminal, would the resulting action potentials travel only from the stimulus point to the axon terminal?

Answers

Yes, if a stimulus was applied in the middle of a nerve roughly halfway between the cell body and the axon terminal, the resulting action potentials would travel only from the stimulus point to the axon terminal.

This is because the direction of the action potential is always from the cell body toward the axon terminal. The stimulus activates voltage-gated channels in the cell membrane, creating a current that then causes the action potential to move in the direction of the axon terminal. This action potential can not move back towards the cell body, and so will travel only from the stimulus point to the axon terminal.

The process begins when a stimulus, such as an electrical impulse, is applied to a neuron. The stimulus causes voltage-gated channels in the cell membrane to open, allowing ions to enter or leave the neuron. This results in a change in the potential difference across the membrane, causing an action potential to be generated. The action potential is an electrical impulse that travels along the neuron, in the direction of the axon terminal.

Therefore, the action potential would only travel from the stimulus point to the axon terminal if the stimulus was applied roughly halfway between the cell body and the axon terminal.

To know more about action potential, refer here:

https://brainly.com/question/30701189#

#SPJ11

Which of the following is the appropriate sequence for classically conditioning an eyeblink response to an auditory stimulus?
a. deliver a puff of air to the eyelid, sound the tone
b. sound the tone, deliver a puff of air to the eyelid
c. follow the eyeblink response with a mild shock
d. follow the eyeblink response with a soft drink

Answers

The appropriate sequence for classically conditioning an eyeblink response to an auditory stimulus is to sound the tone, then deliver a puff of air to the eyelid.

What is classical conditioning? Classical conditioning is a type of learning where a new stimulus is associated with a previously unconnected stimulus. The most well-known example is Ivan Pavlov's experiments on dogs, in which he demonstrated how the sound of a bell could become associated with the act of eating, causing the dogs to salivate.

What is an auditory stimulus? An auditory stimulus is one that is heard, rather than seen, felt, or smelled. In the case of Pavlov's experiments, the sound of the bell was the auditory stimulus.

So in the given question, the appropriate sequence for classically conditioning an eyeblink response to an auditory stimulus is to sound the tone, then deliver a puff of air to the eyelid.

So, the correct answer is option B, sound the tone, deliver a puff of air to the eyelid.

"auditory stimulus", https://brainly.com/question/31135002

#SPJ11

a fertilized egg usually implants itself and develops in the _____.

Answers

A fertilized egg usually implants itself and develops in the uterus.

Fertilization is the process in which a woman's egg combines with a man's sperm to form an embryo. Usually, the fallopian tube that connects an ovary to the uterus is where fertilization occurs. An embryo begins to develop if the fertilized egg successfully passes through the fallopian tube and implants in the uterus.

In a woman's ovaries are all the eggs she will ever produce. Egg production stops for women. Contrary to men, who continuously produce more sperm, this is different. An egg is discharged from one of a woman's two ovaries about once every month. This is referred to as ovulation. The egg then travels through a neighbouring fallopian tube and into the uterus.

To know more about click uterus here:

https://brainly.com/question/9778292

#SPJ4

there is a population where the frequencies of allele 1 and allele 2 are 0.7 and 0.3, respectively. genotype a1a1 has a selection coefficient of 0.2. what is a1a1's genotype fitness?

Answers

The fitness of genotype a1a1 when the frequencies of allele 1 and allele 2 are 0.7 and 0.3, respectively and it has a selection coefficient of 0.2 is 0.76.

An allele frequency refers to the frequency at which a specific allele appears in a population. The frequency of an allele refers to the rate at which an allele appears in the gene pool of a population. The gene pool of a population is the sum of all the genetic data within the individuals in the population.

It includes all the alleles, chromosomes, genes, and variations of genes that make up the population. In this case, the frequency of allele 1 is 0.7 and the frequency of allele 2 is 0.3. Genotype fitness is the fitness of a particular genotype in a population. It can be calculated using the following formula: w = 1 – s × (q2). Where,

w is the genotype fitness, s is the selection coefficient, and q2 is the frequency of homozygous recessive individuals.

In this population, the frequency of allele 1 is 0.7, so the frequency of the homozygous recessive genotype (a1a1) can be calculated as follows:q2 = p2 * (1 – 2p) + q2where p is the frequency of the dominant allele, which in this case is 0.7.

Therefore,q2 = (0.7)2 × (1 – 2 × 0.7) + (0.3)2q2 = 0.49 × (1 – 1.4) + 0.09. q2 = 0.21. The fitness of the a1a1 genotype can now be calculated as follows: w = 1 – s × (q2)Where s is the selection coefficient of the a1a1 genotype, which is 0.2. So,w = 1 – 0.2 × (0.21). w = 0.76. Therefore, the fitness of the a1a1 genotype is 0.76.

Learn more about genotypes: brainly.com/question/30460326

#SPJ11

besides insulin, there is only one other thing that can stimulate the uptake of glucose by the cells and that is:

Answers

Besides insulin, there is only one other thing that can stimulate the uptake of glucose by the cells, and that is exercise.

Glucose is a kind of sugar that is the body's main source of energy. It's a carbohydrate that, in our bodies, provides us with the energy we need for activities. Glucose is converted into energy by the cells in our bodies, which is used to power our bodies.The process by which glucose is converted to energy in our bodies is known as cellular respiration.

In the absence of oxygen, our cells switch to anaerobic respiration, which is a less efficient way of producing energy than aerobic respiration.Insulin is a hormone that is produced by the pancreas. Insulin is responsible for allowing glucose to enter the body's cells, where it can be used to make energy. Insulin is required for glucose to enter most of the body's cells.

The liver, muscle, and adipose tissue are the primary targets of insulin.Insulin is a hormone that regulates blood sugar levels in the body. When there is too much glucose in the blood, the pancreas releases insulin to bring blood sugar levels down. When there isn't enough glucose in the blood, insulin secretion decreases, allowing blood sugar levels to rise.

Exercise is a physical activity that is done to improve health or physical fitness. Any activity that causes the body to use energy can be considered exercise. Exercise can come in a variety of forms, from walking and cycling to running and swimming.Exercise is a potent stimulus for glucose uptake by the cells.

When we exercise, our muscles require more energy, and glucose uptake by the cells is increased. The primary reason exercise increases glucose uptake is that exercise improves insulin sensitivity. When we exercise, our body becomes more sensitive to insulin, allowing more glucose to enter our cells.

Learn more about exercise here:

brainly.com/question/13128077

#SPJ11

Which of these statements about lymphocytes is false?They mostly occur in lymphoid tissues.They are phagocytic.They occur as B, T, and NK types.They bind antigens.

Answers

Statements about lymphocytes are false are they are phagocytic.

The lymphocyte is the type of cell that makes up the majority of lymphoid tissue. Lymphocytes, like macrophages, are made from stem cells in the bone marrow and transported to lymphoid tissue in the blood. Before moving on to other lymphoid organs like the spleen, T lymphocytes mature in the thymus.

It is generally believed that specialized APCs 10, but not naive B cells 11, 12 carry out phagocytosis. However, it has been demonstrated that a specific subpopulation of B cells known as B1 B cells can also phagocytose bacteria, 13, 14, 15, and 16.

To learn more about phagocytic here

https://brainly.com/question/16185213

#SPJ4

how do genes, phenotypes, and the environment interact with each other?

Answers

Answer:

Environmental factors such as diet, temperature, oxygen levels, humidity, light cycles, and the presence of mutagens can all impact which of an animal's genes are expressed, which ultimately affects the animal's phenotype.

Explanation:

hope this helps

where is dna replication initiated on a chromosome

Answers

DNA replication is initiated at the replication origin (or origins) on a chromosome. The replication origin is a specific region of the chromosome that is responsible for initiating the replication process.

The initiation of DNA replication begins when the two strands of the double helix separate, forming a replication bubble. This bubble contains two replication forks that travel in opposite directions away from the replication origin. As the forks move, the DNA strands are unwound, and new strands are formed by complementary base pairing. After replication, the chromosome is composed of two identical DNA molecules. In eukaryotes, DNA replication typically begins at multiple replication origins, located at the chromosomal origin of replication (ORI) sites. This allows the process of replication to be completed faster, thus ensuring the faithful transmission of genetic information.

To learn more about DNA :

https://brainly.com/question/16099437

#SPJ11

Which option lists the sequence of events in the cell-signaling process in the correct order? reception, signal transduction, and resposne.

Answers

The correct sequence of events in the cell-signaling process in order is reception, signal transduction, and response.

What is cell signaling?

Cell signaling is a way of communication among cells that enable cells to perceive and respond to their environment, alter gene expression, and regulate their differentiation and proliferation.

The cell signaling process involves three stages:

Reception: It is the initial stage in which a molecule outside the cell binds to a receptor protein situated on the plasma membrane's surface. The signaling molecule is referred to as a ligand, which binds to a specific site on a receptor protein. The receptor protein then undergoes a change in shape, initiating the transduction process.

Signal transduction: It is the second stage in which the binding of the signaling molecule causes the receptor protein to undergo a change in shape. This initiates a series of changes in the protein's conformation that results in the production of a cellular response.

Response: It is the final stage in which a cellular response occurs after a signaling molecule binds to its specific receptor protein. This response can occur in various ways, such as the regulation of transcription factors' activity, the initiation of an enzymatic cascade, or the modification of membrane transporters.

Therefore, the correct sequence of events in the cell-signaling process in order is reception, signal transduction, and response.

See more about cell in:

https://brainly.com/question/3717876

#SPJ11

Please help me. !!!!!!!!!!!

Answers

Explanation:

this pic is not clear..you should cry to use other phone or send clear picture so that we can help you

what structure holds the chordae tendineae to the interior walls of the heart is called?

Answers

Papillary muscles holds the chordae tendineae to the interior walls of the heart.

The papillary muscles are found in the heart's ventricles. They connect to the mitral and tricuspid valve cusps via the chordae tendineae and contract to stop these valves from prolapsing or inverting during systole (or ventricular contraction). Around 10% of the total heart mass is made up of the papillary muscles.

In total, the heart contains five papillary muscles, two in each ventricle (right and left). Through chordae tendineae, the tricuspid valve is connected to the anterior, posterior, and septal papillary muscles of the right ventricle. The mitral valve is connected to the left ventricle's anterolateral and posteromedial papillary muscles by chordae tendineae.

To know more about Papillary muscles click here:

https://brainly.com/question/14697886

#SPJ4

"Which terminal taxon is B more closely related to, A or C? Explain how you know. "

Answers

Without more specific information about the characteristics or the evolutionary history of taxa A, B, and C, it is not possible to determine which terminal taxon B is more closely related to.

Without any additional information or context about taxa A, B, and C, it is impossible to determine which terminal taxon B is more closely related to. To determine the evolutionary relationships between taxa, scientists use various methods, such as molecular sequence data analysis or morphological comparisons.

Molecular sequence data analysis involves comparing the genetic material, such as DNA or RNA, of different organisms. By analyzing the similarities and differences in their sequences, scientists can determine the degree of relatedness between different taxa. Morphological comparisons, on the other hand, involve comparing physical characteristics of organisms, such as their anatomy, behavior, or reproductive systems.

To know more about Taxa, visit: brainly.com/question/13049459

#SPJ4

soil moisture tightly bound to each soil particle and unavailable for plant use is termed ___ water. question 38 options: o hygroscopic o capillary o available gravitational

Answers

Soil moisture tightly bound to each soil particle and unavailable for plant use is termed hygroscopic water.

Thus, the correct answer is hygroscopic (A).

What is hygroscopic water?

Hygroscopic wаter refers to the аmount of wаter thаt is tightly held by soil pаrticles аnd is not аvаilаble for plаnt use. It is so tightly bound to the soil pаrticles thаt it requires а lot of energy for it to be removed from the soil. Due to this tightly bound moisture, hygroscopic wаter is not used by plаnts аnd is not considered аs soil wаter. It is mаinly found in soil pаrticles such аs clаy.

The hygroscopic coefficient is the аmount of wаter а dry soil cаn аbsorb when in contаct with а humid аtmosphere. The cаpаcity of а soil to аbsorb moisture from the аir is determined by the number аnd size of its clаy аnd orgаnic mаtter pаrticles. The hygroscopic coefficient rаnges from 0 to 0.2 аnd vаries with temperаture, soil texture, аnd sаlt content.

For more information about hygroscopic wаter refers to the link: https://brainly.com/question/13545535

#SPJ11

During a fight-or-flight response, epinephrine is released into the body’s circulatory system and transported throughout the body. Some cells exhibit a response to the epinephrine while other cells do not.Which of the following justifies the claim that differences in components of cell signaling pathways explain the different responses to epinephrine?a. Cell signaling depends on the ability to detect a signal molecule. Not all cells have receptors for epinephrine. Only cells with such receptors are capable of responding.b. Cell signaling depends on the transduction of a received signal by the nervous system. Not all cells are close enough to a synapse to receive the signal and respond.c. Cell signaling depends on the signal being able to diffuse through the cell membrane. Epinephrine is incapable of diffusing through some plasma membranes because of the membrane’s phospholipid composition.d. Cell signaling requires reception, transduction, and response. All cells can receive epinephrine, all cells respond with a pathway, but only select cells have the proper coding in their DNA to respond.

Answers

The correct answer is option A. Receptors detect specific molecules of epinephrine.

During the fight-or-flight response, epinephrine is released into the circulatory system and transported throughout the body. Cell signalling is the process that allows for different responses to this epinephrine. Epinephrine triggers a cascade of events by acting as a signal molecule (ligand) that binds to specific receptors on the surface of target cells and generates the cellular response. Cell signalling depends on the ability to detect a signal molecule, so only cells with receptors for epinephrine will be able to respond to it. Option A explains that not all cells have receptors for epinephrine, so only cells with these receptors are capable of responding.

Learn more about epinephrine: https://brainly.com/question/22817529

#SPJ11

True or False: Aerobic respiration is the complete combustion in the absence of oxygen.

Answers

Answer:

True

Explanation:

This question would be true.

what is the purpose of the inclusion of a durham tube in differential culture media?

Answers

Answer: To visualize the production of gas during growth.

How did the unit of measurement of NH; concentration differ between Studies 2 and 3? In Study 2, the NH; concentration:

Answers

Based on the given options, the answer is A. In Study 2, the NH concentration was determined for several different solids, while in Study 3 the NH4+ concentration of a liquid was determined.

What is concentration?

Concentration refers to the amount of solute (a substance that is dissolved in a solvent) that is present in a given amount of solution (a mixture of solvent and solute).

Concentration can be expressed in several different ways, including mass concentration, molar concentration, and volume concentration.

Mass concentration: This is the amount of solute present in a given mass or volume of solution. It is usually expressed in units such as grams per liter (g/L) or milligrams per milliliter (mg/mL).

Molar concentration: This is the number of moles of solute present in a given volume of solution. It is usually expressed in units such as moles per liter (mol/L) or millimoles per milliliter (mM/mL).

Volume concentration: This is the volume of solute present in a given volume of solution. It is usually expressed in units such as percent (%) or parts per million (ppm).

The concentration of a solution can have a significant impact on its properties and behavior. For example, the concentration of a solute can affect the solubility of a solution, its density, and its chemical reactivity. Concentration is an important parameter in many fields, including chemistry, biochemistry, and environmental science.

Here,

This indicates that the unit of measurement of NH concentration was different in the two studies, with Study 2 measuring the NH concentration in solid samples and Study 3 measuring the NH4+ concentration in a liquid sample. It's important to note that the NH concentration and NH4+ concentration are not exactly the same thing, although they are related. NH3 (ammonia) is a gas, while NH4+ (ammonium) is an ion that is typically found in solution. When ammonia dissolves in water, it reacts with water molecules to form ammonium ions and hydroxide ions. Therefore, the concentration of NH3 and NH4+ can be related, but they are not interchangeable.

To know more about concentration,

https://brainly.com/question/28739721

#SPJ1

of the following cingulate gyrus and prefrontal cortex, this cortical region functions in?

Answers

Out of given option between cingulate gyrus and prefrontal cortex, the cortical region functions in the prefrontal cortex.

The prefrontal cortex functions in "planning complex cognitive behavior, personality expression, decision making, and moderating social behavior" and is responsible for working memory, abstract reasoning, and executive control, among other things.

How does the prefrontal cortex work?

The prefrontal cortex (PFC) is divided into several sub-regions, each with its own set of neuronal connections and functions. The dorsolateral PFC (DLPFC) and ventrolateral PFC (VLPFC) are the most well-known subdivisions responsible for different cognitive abilities.

The prefrontal cortex is made up of four major sub-regions, each of which has a specific function:

VLPFC (Ventrolateral prefrontal cortex) - decision-making and processing social cues, as well as inhibitory control;DLPFC (Dorsolateral prefrontal cortex) - problem-solving, reasoning, and working memory; OFC (Orbitofrontal cortex) - assigning emotional value to objects and events; MPFC (Medial prefrontal cortex) - social and self-reflection and contextual analysis.

It is part of the cerebral cortex's frontal lobes, which are located at the front of the brain. The prefrontal cortex is in charge of a wide range of complex cognitive and behavioral tasks, including problem-solving, social interaction, and decision-making.

The prefrontal cortex is critical in determining the proper course of action and determining which behaviors are socially appropriate.

To know more about prefrontal cortex, refer here:

https://brainly.com/question/9941447#

# SPJ11

If necessary to design a new experiment, which of the following best explains why researchers could use measurements of intracellular lactate levels (ILL) in cancer cells to assess efficacy of cancer drugs?
a) High ILL would indicate that glycolysis is significantly inhibited.
b) Low ILL would indicate that glycolysis is significantly inhibited.
c) High ILL would indicate that the pentose phosphate pathway is significantly inhibited.
d) Low ILL would indicate that the pentose phosphate pathway is significantly inhibited.

Answers

If necessary to design a new experiment, high ILL would indicate that glycolysis is significantly inhibited; hence, the researchers could use measurements of intracellular lactate levels (ILL) in cancer cells to assess efficacy of cancer drugs. The correct option is A.

The measurements of intracellular lactate levels (ILL) in cancer cells could be used to assess the effectiveness of cancer drugs, as it can indicate whether glycolysis is significantly inhibited or not.

High ILL would indicate that glycolysis is significantly inhibited. This is because the end product of glycolysis is pyruvate, which is then converted to lactate in the presence of high levels of hydrogen ions. Thus, high ILL is an indication of the Warburg effect, where cancer cells switch to anaerobic glycolysis to produce ATP. This effect increases lactate production and, therefore, intracellular lactate levels.

In contrast, low ILL would indicate that glycolysis is not significantly inhibited, meaning that the cancer cells are continuing to proliferate despite the presence of the drug. This would be an indication that the drug is not effective in inhibiting cancer cell growth.

Thus, the best option explaining why researchers could use measurements of intracellular lactate levels (ILL) in cancer cells to assess efficacy of cancer drugs is high ILL would indicate that glycolysis is significantly inhibited.

Learn more about glycolysis here: https://brainly.com/question/1966268

#SPJ11

How do Warmer ocean temperatures affect coral reefs?

Answers

Answer: Warmer ocean temperatures can have a negative effect on coral reefs by leading to more powerful hurricanes, cyclones and typhoons as well as eroding coastal lands and bringing more polluted runoff into the ocean due to heavy rainfall from the storms. Additionally, increased sea level can dramatically affect coral reef ecosystems.

Your brain begins to grow rapidly at ___________ weeks

Answers

Your brain begins to grow rapidly at 7 weeks.

The brain will grow at a rate of 250,000 neurons per minute for the following 21 weeks starting from the time the neural tube closes, which occurs around week 7.

At week 5, the foetus will start the process of developing a brain, but the real fun doesn't start until week 6 or 7, when the neural tube shuts and the brain divides into three pieces.

The rapid rate of brain development beginning before birth and continuing throughout early childhood is one of the key causes. Although while the brain continues to grow and alter throughout adulthood, the first eight years of life can lay the groundwork for future success in learning, health, and living.

To know more about the brain, visit,

https://brainly.com/question/1247675

#SPJ4

the coordinated regulation of herpes virus infection is controlled by host proteins in response to the production of vp16. group of answer choices true false

Answers

The statement "the coordinated regulation of herpes virus infection is controlled by host proteins in response to the production of vp16" is true because host proteins interact with the viral protein VP16 to activate the expression of viral genes required for viral replication.

What is herpes virus?

Herpes viruses cause lifelong infections that are characterized by periodic reactivation and episodes of disease. The herpes simplex viruses (HSVs) are common human pathogens that cause a variety of diseases, ranging from mild oropharyngeal or genital lesions to severe and often life-threatening infections in immunocompromised individuals.

The coordinated regulation of herpes virus infection is controlled by host proteins in response to the production of VP16. VP16 is an essential protein for transcriptional activation of viral immediate-early (IE) genes in herpes simplex virus. VP16 is a transcriptional activator in herpes simplex virus type 1 that aids in the transcription of the immediate-early genes of the virus by cooperating with other regulatory proteins to recruit cellular proteins that contribute to transcriptional initiation at the viral immediate-early promoters.

Learn more about Herpes viruses here: https://brainly.com/question/3690773.

#SPJ11

what is the result of covalent modification of the glycogen phosphorylase enzyme?

Answers

The result of covalent modification of the glycogen phosphorylase enzyme is the alteration of the activity of the enzyme.

This modification can either activate or inhibit the enzyme’s activity, depending on the type of modification. For example, phosphorylation is a covalent modification that increases the enzyme’s activity, while dephosphorylation is a covalent modification that decreases the enzyme’s activity.
Covalent modifications are typically reversible, meaning the modification can be reversed. This is often done through the action of another enzyme, which catalyzes the reverse reaction.
The glycogen phosphorylase enzyme is a key enzyme in the glycogenolysis pathway, which is responsible for breaking down the glycogen stored in the liver and muscles. Covalent modification of this enzyme can have wide-ranging effects on the body. For example, when glycogen phosphorylase is activated, the body will break down glycogen more quickly, releasing glucose into the bloodstream. Conversely, when glycogen phosphorylase is inhibited, glycogenolysis is reduced and the body will not produce glucose as quickly.
In summary, covalent modification of the glycogen phosphorylase enzyme can result in the activation or inhibition of the enzyme’s activity, and this can have far-reaching effects on the body.

For more such questions on phosphorylase enzyme

https://brainly.com/question/17100824

#SPJ11

in addition to providing support, movement, and protection, bones also function in the formation of cells and the storage of minerals is definition of?

Answers

Bones are complex organs made up of living tissue that serve a number of functions in the body. In addition to providing support, movement, and protection, bones also play a critical role in the formation of blood cells and the storage of minerals.

Bone marrow is a spongy tissue located within the cavities of bones that is responsible for the production of blood cells. Two types of bone marrow exist red marrow and yellow marrow.

Red marrow is responsible for the production of red blood cells, white blood cells, and platelets, while yellow marrow functions primarily as a site for the storage of fat.

Bones also act as a reservoir for a number of minerals that are critical for the functioning of the body, including calcium and phosphorus. These minerals can be released from bones into the bloodstream as needed to maintain proper levels in the body.

To learn more about bone

https://brainly.com/question/29606469

#SPJ4

Other Questions
refer to the exhibit. an administrator is testing connectivity to a remote device with the ip address 10.1.1.1. what does the output of this command indicate? PLS HELP FAST IM GIVING 50 POINTS FILL IN THE BLANK. Examples of ___________ behavior include the person being able to feed and clothe him or herself, understanding the time, or reading simple words. 0. 302 grams of an antibiotic was dissolved in enough water at 23. 6C to make 500. 0 mL of solution. The solution has an osmotic pressure of 8. 34 mm Hg. What is the molar mass of the antibiotic? How do you calculate FV in Python? . Within function empty(), write the Boolean expression to determine if the list is empty. Do not put spaces in your answer. That is, X=-Y is okay, but X == Y is not. 2. True or False: Removing the last element from the list conditionally requires setting sentinel._next to nullptr. 3. Implement push_front(data) in 5 lines of code. Do not separate identifiers and operators with spaces, but do separate identifiers with a single space. That is, X=Y and new Data are okay, but X = Y, newData , and new Data are not. Don't forget your semicolon. template void DuublyLinkeList:: push_front( const 1 & data) { // 1. Get and initialize a new dynamically created Node called newNode // 2. Set the new node's next pointer to point to the first node in the list // 3. Set the new node's previous pointer to the list's dummy node // 4. Set the first node's previous pointer to point to the new node // 5. Set the dummy node's next pointer to point to the new node } ******** ****** ** Class DoublyLinkedList - a very basic example implementation of the Doubly Linked List Abstract Data Type ** This file provides a one-dummy node, circular implementation of the DoublyLinkedList interface ** Empty (size = 0): V V I prev | not used | next ** sentinel A A A begin( (aka head, sentinel.next) tail (aka sentinel.prev) end size = 3: -+ 1 +- ------ I - prev | not used | next |----> prev | data | next |----> prev data | next prev | data | next |---- -- | sentinel A A A A 1 1 1. 1. end() tail (aka sentinel.prev) begin() (aka head, sentinel.next) **** */ #pragma once #include size_t #include length_error, invalid argument #include "DoublyLinkedlist.hpp" ******** *******/ ***** ******** ********/ /***** ** DoublyLinkedList with one dummy node function definitions namespace CSUF::CPSC131 { /**** ** A doubly linked list's node ************ template struct DoublyLinkedList::Node { Node() = default; Node const Data_t & element ) : _data( element) {} Data_t_data; linked list element value Node * _next = this; next item in the list Node * _prev = this; previous item in the list 11 // ************ *********** ***/ /****** ** A doubly linked list's private data implementation template struct DoublyLinkedList::PrivateMembers A specific implementation's private members (attributes, functions, etc) { Node _sentinel; dummy node. The first node of the list (_head) is at _sentinel->next; Node *& _head = _sentinel._next; An easier to read alias for the list's head, which is a pointer-to-Node Node *& _tail = _sentinel._prev; last element in the list. tail->next always points to _sentinel std::size_t _size = 0; number of elements in the collection }; template typename DoublyLinkedList::Iterator DoublyLinkedList:.insertBefore( const Iterator & position, const Data_t & element ) { Node * newNode = new Node( element ); create and populate a new node newNode->_next = position(); newNode->_prev = position->_prev; position()->_prev->_next = newNode; position() ->_prev = newNode; ++self->_size; return newNode; } template typename DoublyLinkedList::Iterator DoublyLinkedList:.remove( const Iterator & position ) { if( empty ) throw std:: length_error ( "Attempt to remove from an empty list ); if(position == end()) throw std::invalid_argument( "Attempt to remove at an invalid location" ); position()->_next->_prev = position()->_prev; position->prev->next = position ->next; --self->_size; Iterator returnNode( position()->_next ); return the node after the one removed delete position(); delete what used to be the old node return returnNode; } template typename DoublyLinkedList::Iterator DoublyLinkedList::end() const { return &self->_sentinel; } template typename DoublyLinkedList::Iterator DoublyLinkedList::rend() { return &self->_sentinel; } const with an interval scale, group of answer choices we cannot compare the absolute magnitude of numbers. we cannot state that the difference between 0.25 and 0.50 is the same as the difference between 37.75 and 38.00. there is a naturally-occurring zero point. the median and the mode are the only permissible measures of average. all of these statements concerning an interval scale are false. a delivery truck driver charges a fixed base price of $6 for 2 miles. after 2 miles, he charges an additional $2 for every mile after 6 miles he charges an additional $4 for every mile Which of the following procedures would an accountant least likely perform during an engagement to review the financial statements of a nonissuer?a. Observing the safeguards over access to and use of assets and recordsb. Comparing the financial statements with anticipated results in budgets and forecastsc. Inquiring of management about actions taken at the board of directors' meetingsd. Studying the relationships of financial statement elements expected to conform to predictable patterns If the angles of a pentagon are x, x, 2x, (2x +40), (2x+10), find the value of the biggestangle Robert Smalls, Abolitionist (and probably a Pirate)Robert Smalls was born a slave on April 5, 1839 in Beaufort, South Carolina. When he was 12 years old, his master took him to Charleston, South Carolina, to work as a hotel waiter and taxi driver. At the beginning of the Civil War, he was hired to work on a Confederate steamship that carried guns and ammunition for Confederate soldiers.On May 13, 1862, he led a rebellion on the ship and took all of the supplies to the North to give to the Union. The Union Army hired him to captain an ironclad ship. He was the first African American to captain a ship in the U.S. navy.After the war, Smalls was elected to the South Carolina House of Representatives where he fought to create equality for newly freed slaves. In 1875, he was elected to the US House of Representatives, making him one of the first African American men elected to federal office.This is a SUMMARY. Do NOT research this topic on the internet, you are to look at the article posted and summarize that; nothing else. The CRQ is a paragraph with at least 4 sentences.Example: In the article, "Robert Smalls, Abolitionist", the author discusses Robert Smalls. First..... Bria is a customer who would like to display her collection of soap carvings on top of her bookcase. The collection needs an area of 300 square inches. What should b equal for the top of the bookcase to have the correct area? Round your answer to the nearest tenth of an inch. help me pls D; please !!!! suppose that the ethylene molecule gains an dditional electron to give the c2h4 ion. does the bond order of the carbon carbon bond increase or decrease how are eukaryotic mrnas modified before leaving the nucleus? multiple select question. a cap is added to the 5' end. introns are removed by splicing. the initiator methionine is added. exons are removed by splicing. a poly(a) tail is added to the 3' end. what maximum speed can the car have without flying off the road at the top of the hill? express your answer to two significant figures and include the appropriate units. Find the value of x in the following diagram.Round your answer to the nearest hundredth. 1 ptThe rise of fascism in Europe during the 1930s is directly linked to thefailure to punish those responsible for "crimes against humanity"increased global trade after World War Idevelopment of authoritarian governments inLatin Americainstability caused by the worldwide depression Sometimes dreams become reality. What has the greatest effect on the ability of a substrate yo bind to an enzyme Consider an air parcel that initially features a northward trajectory from the equator towards the North Pole. How will the Coriolis force act on this air parcel once it starts moving? The parcel's trajectory will veer towards the west The parcel's trajectory will veer towards the east The parcel's trajectory will continue north The parcel's trajectory will reverse and move south