If you stand on one foot while holding your other leg up behind you, your muscles apply a force to hold your leg in this raised position. We can model this situation as in Figure 1). The leg pivots at the knee joint, and the force that holds the leg up is provided by a tendon attached to the lower leg as shown Assume that the lower leg and the foot have a combined mass of 3.6kg, and that the combined center of gravity is at the center of Figure he knot What is the magnitude of this force? The london provides you hold your leg in this position the upper legeerts a force Express your answer with the appropriate units the lower le TARO? Value Units Sube

Answers

Answer 1

To keep the leg in the raised position, the tendon should provide 160N force.

The rotating force or moment of a force around a particular axis or pivot point is measured by torque. The tendency of a force to cause an object to spin along an axis is described as a vector quantity, torque.

Given: combined mass of the lower leg and the foot, m = 3.6kg

position of the center of gravity, r1 = 25cm

r = 0.25m

distance between tendon and lower leg, r2 = 5cm = 0.05m

torque applied will be τ = 3.6 × 10 × 0.25

τ = 8 N-m

the force applied by tendon

F = τ/ r2

F = 8/ 0.05

F = 160N

Therefore, To keep the leg in the raised position, the tendon should provide 160N force.

To know more about torque, click here:

https://brainly.com/question/29024338

#SPJ12

If You Stand On One Foot While Holding Your Other Leg Up Behind You, Your Muscles Apply A Force To Hold

Related Questions

if a star had twice the temperature of the sun, but the same radius what would be its luminosity compared to the sun?

Answers

The luminosity of a star that has twice the temperature of the Sun, but the same radius as the Sun is approximately 16 times that of the Sun. This can be represented by Stefan-Boltzmann law.

What is Luminosity?

The total amount of energy emitted by a star per unit of time is known as luminosity. It is usually calculated in terms of the Sun's luminosity. A star's luminosity is determined by its surface temperature and size. Luminosity is often confused with brightness, which is the amount of light that reaches an observer from a celestial body.

The Stefan-Boltzmann law, L = 4πR2σT4, is used to calculate the luminosity of a star. Here, L is the star's luminosity, R is its radius, T is its temperature, and σ is the Stefan-Boltzmann constant. The radius of a circle is the distance between its center and any point on its circumference. It is one of the circle's most basic properties. The radius of a circle is a line segment that extends from its center to its perimeter. The radius is half of the diameter of a circle. In the formula for the area of a circle, the radius plays an important role because it is squared.

Learn more about Luminosity here:

https://brainly.com/question/14140223

#SPJ11

what is the difference between a short and long period comet?

Answers

An orbital period of less than 200 years characterises a short period comet, whereas an orbital period of more than 200 years characterises a long period comet.

Long period comets come from the Oort Cloud, a spherical cloud of frozen bodies that surrounds the solar system, whereas short period comets come from the Kuiper Belt, a region of the solar system beyond Neptune.

Long period comets are significantly more unpredictable and can have extremely elliptical orbits that bring them near to the sun and then far away again. Short period comets typically have more predictable orbits and are more likely to be detected more than once. Long period comets are also more likely to have volatile compositions and fragment while travelling across the solar system.

learn more about comets here:

https://brainly.com/question/12443607

#SPJ4

Those under probation following a DUI conviction may not be able to enter a business that...
A. sells automobiles.
B. issues driver licenses.
C. serves alcohol.

Answers

Those under probation following a DUI conviction may not be able to enter a business that C. serves alcohol.

What is DUI?

Driving while intoxicated (DUI) is the crime of operating a vehicle while under the influence of alcohol or other substances (including prescription medications and recreational drugs) to the point where it is unsafe for the driver to do so.  The offence goes under many different names in different jurisdictions.

Even if the person accused is not actually driving the car, the criminal violation may generally include being physically "in control" of a car while under the influence of alcohol.

For instance, DUI charges may be brought against those who are discovered holding the car keys while intoxicated in the driver's seat of a parked vehicle.

What are the DUI probation conditions?

DUI probationary criteria can vary based on the situation, but frequently include things like:

Avoiding alcohol and drugs, and abiding by the law, completion of a substance abuse assessment and suggestions for treatment.

Regular drug and alcohol testing, attendance at AA meetings, and using an ignition interlock device (IID) in your car are all required.

The judge may also order ongoing drug and alcohol monitoring utilising tools like SCRAM (secure continuous remote alcohol monitoring) bracelets or drug patches to make sure the offender doesn't use drugs or alcohol while on DUI probation.

To know more about DUI, visit:

https://brainly.com/question/30418096

#SPJ1

Assume that a drop of mercury is an isolated sphere. What is the capacitance in picofarads of a drop that results when two drops each of radius R = 5.61 mm merge?

Answers

The formula C=4R, where is the permittivity of open space, may be used to determine the capacitance of a merged mercury drop, assuming it is an isolated sphere. The capacitance is around 1.68 pF with R = 5.61 mm.

The formula C=4R, where R is the drop's radius and is the permittivity of free space, may be used to determine the capacitance of a merged mercury drop. As the capacitance of an isolated sphere is exactly proportional to its radius, the capacitance produced by the merger of two drops with similar radii is equal to the total of the capacitances of the individual drops. Given that the radius of the combined drop in this instance is R = 5.61 mm, the capacitance can be estimated using the formula C = 4(8.85 x 10-12 F/m) (5.61 x 10-3 m)2, yielding a capacitance of around 1.68 pF.

learn more about capacitance here:

https://brainly.com/question/28445252

#SPJ4

When you are inhaling, the intrapulmonary pressure is _____ than the atmospheric pressure.

Answers

When you are inhaling, the intrapulmonary pressure is less than the atmospheric pressure.

What is intrapulmonary pressure? Intrapulmonary pressure (P pulmonale) is the pressure inside the lungs, which decreases when the diaphragm and intercostal muscles contract, expanding the lung volume and lowering the air pressure inside the lungs.

The air is then compelled to move from the region of higher pressure outside the body to the region of lower pressure inside the lungs.

According to Boyle's law, which states that the pressure of a given mass of gas is inversely proportional to its volume at a fixed temperature, the decrease in intrapulmonary pressure during inhalation results in the air being drawn into the lungs.

What happens when we inhale? Inhalation, also known as inspiration, is the process of breathing in air, which involves the diaphragm contracting and flattening, and the intercostal muscles contracting to increase the thoracic cavity's size. This reduces intrapulmonary pressure and causes air to be drawn into the lungs.

To know more about  intrapulmonary pressure, refer here:

https://brainly.com/question/15300008#

SPJ11#

this is a less well-known paradox than the pole and barn paradox, and has a more subtle resolution. consider a submarine that has a neutral buoyancy with respect to water it is in when it is at rest. for simplicity, we take the sea it is in to have zero viscosity and constant density. then consider the submarine moving through the fluid at some relativistic speed and as always, consider from two frames of reference. here is the paradox: from the fluid's reference frame, where the fluid is at rest, the density of the fluid is the same as when the submarine is at rest. however, due to length contraction, the submarine is shorter, the volume is smaller, and the mass density of the submarine is now greater. thus, the submarine sinks in this frame of reference. from the submarine's frame of reference, the density of the submarine is the same but the water is length contracted and thus the density of the water is greater. in this case the submarine floats up! these are mutually exclusive results and cannot both be true. is relativity wrong? how do you resolve this? some caveats: first, this problem involves gravity and thus should properly be treated by general relativity. however, we don't know enough yet about gr to resolve this, we will use special relativity only. to help see the resolution, place this submarine in a sea that has a flat floor and sea surface in the water's frame. [hint: think of the sea floor and do spacetime physics l-10 (and maybe l-11,12 as well).]

Answers

The paradox arises because we are assuming that density is an absolute quantity, whereas it is relative to the observer's frame of reference. The submarine will find an equilibrium point where its density is equal to the density of the water, and it will neither sink nor float up.

What is Density?

The density of a substance indicates how dense it is in a particular area. Mass per unit space is the definition of a material's density. Density is basically a measurement of how tightly matter is packed together.


The paradox arises because the density of the fluid in the frame of reference of the submarine is different from the density of the fluid in the frame of reference of the fluid itself. This is because the length contraction of the fluid in the submarine's frame of reference means that the volume of the fluid decreases, and so the mass density of the fluid increases. This means that in the submarine's frame of reference, the submarine is more dense than the water and so floats upwards.

Meanwhile, in the frame of reference of the fluid, the submarine is not length contracted, so the mass density of the submarine remains the same, and the density of the water increases due to the length contraction of the fluid. This means that in this frame of reference, the submarine is less dense than the water and so sinks downwards.

The resolution of this paradox is found by considering the effect of gravity on the fluid and the submarine. In both frames of reference, the gravity acts upon the fluid and the submarine. In the frame of reference of the submarine, the gravity acts on the water, increasing the pressure of the water and thereby reducing its density. This reduces the buoyancy of the submarine, causing it to sink. In the frame of reference of the fluid, the gravity acts on the submarine, increasing its pressure and thereby reducing its density. This reduces the buoyancy of the submarine, causing it to sink.

Thus, the effects of gravity balance out the effects of length contraction, leading to the same result in both frames of reference: the submarine will sink. This resolution can be understood more clearly by considering the sea floor and the spacetime diagrams of L-10, L-11, and L-12.

Learn more about density on https://brainly.com/question/1354972

#SPJ11

Question 15 (3. 33 points) Solve: What work is done when 3. 0 C is moved through an electric potential difference of 1. 5 V?

A)
0. 5 J

B)
2. 0 J

C)
4. 0 J

D)
4. 5 J

Answers

The following formula can be used to determine the work involved in moving a charge via an electric potential difference:

W = qΔV

where W stands for work completed, q for charge transported, and V for potential difference.

Inputting the values provided yields:

W = (3.0 C) x (1.5 V) = 4.5 J

As a result, 3.0 C moving across a 1.5 V electric potential differential requires 4.5 J of labour.

Response: D) 4.5 J

learn more about electric potential here:

https://brainly.com/question/12645463

#SPJ4

1. Most of the exposed surface of the Earth is covered with: a) sediment and sedimentary rocks b) sediment and igneous rocks c) sediment and metamorphic rocks

Answers

a) sediment and sedimentary rocks. Sedimentary rocks, which are more prevalent on the Earth's surface and generated from deposited sediment as a result of erosion and weathering, are more prevalent than igneous and metamorphic rocks.

Sedimentary rocks, formed from the deposition of sediment due to erosion, weathering, and other geological processes, are the most common type of rock on the Earth's surface. Sandstone, shale, and limestone are examples of sedimentary rocks, which form over long periods of time through the accumulation and consolidation of sediment. Igneous rocks, formed from the solidification of magma or lava, are less common on the Earth's surface compared to sedimentary rocks. Metamorphic rocks, formed from the alteration of existing rocks through heat and pressure, are also less common on the Earth's surface. The distribution and type of rocks on the Earth's surface can provide insight into the geological history of an area, including past environmental conditions and geological events.

learn more about Sedimentary rocks here:

https://brainly.com/question/10709497

#SPJ4

What is the approximate diffraction limit, in arc second, of a 84 meter diameter radio telescope observing 24 cm radiation?

Answers

A radio telescope with an estimated 84 meter diameter that is viewing 24 cm of radiation has a diffraction limit of roughly 43 arc seconds. The Rayleigh criteria, which asserts that the angular resolution .

a telescope is approximately equal to the wavelength of the radiation divided by the telescope's diameter, is used to make this determination. In this instance, the diameter is 84 meters, and the wavelength is 24 cm, or 0.24 meters. The result of dividing the wavelength by the diameter is around 0.002857 radians, or roughly 163 arc seconds.  The Rayleigh criteria, which asserts that the angular resolution . Nevertheless, the resolution is often boosted by a ratio of two to account for the effects of air turbulence, yielding a about 43 arc second diffraction limit.

learn more about  telescope here:

https://brainly.com/question/556195

#SPJ4

You stand 3.5 m in front of a large mirror, and your little sister stands 2.0 m directly in front of you. At what distance should you focus your camera if you want to take a picture of your sister in the mirror?

Answers

Answer:

D = 3.5 m      to mirror

d = 1.50 m     from mirror to sister

Total distance from camera to sister = d + D = 5.0 m

an unsaturated parcel of air has a temperature of -5c at an elevation of 3000 meters. the parcel, remaining unsaturated, sinks all the way to the surface. what is the temperature of the parcel when it reaches the surface?

Answers

The temperature of the unsaturated parcel of air when it reaches the surface will be higher than -5°C. As the parcel descends, it will expand, which increases the air's internal energy and causes the temperature to rise. The amount of temperature rise depends on the rate of descent, which is determined by the parcel's buoyancy and surrounding air density.


In general, the temperature increase of an unsaturated parcel of air is approximately 0.65°C per 100 m of descent. For a parcel descending from 3000 m elevation to the surface, the temperature increase will be approximately 19.5°C (0.65°C/100 m * 3000 m). Therefore, the temperature of the unsaturated parcel of air when it reaches the surface will be approximately 14.5°C (19.5°C + -5°C).


The temperature of the unsaturated parcel of air when it reaches the surface after descending from an elevation of 3000 meters is +11°C.

What is the unsaturated parcel of air?

In meteorology, an unsaturated parcel of air refers to a parcel of air that has a relative humidity that is less than 100 percent. If the temperature of the unsaturated parcel of air is lower than the dew point temperature, the relative humidity of the parcel of air is decreased as the temperature of the air rises. In this case, since the parcel is unsaturated, we can make the assumption that the lapse rate is dry and equal to 10°C/km or 1°C/100 meters. Calculating the temperature of the unsaturated parcel when it reaches the surface can use the dry adiabatic lapse rate to determine the temperature of the unsaturated parcel of air when it reaches the surface. Since the lapse rate is dry and the parcel is unsaturated, the dry adiabatic lapse rate is used in the calculation. The formula used in this calculation is: T = T_0 + (dry adiabatic lapse rate × altitude)where T = temperature, T_0 = initial temperature, and altitude = elevation temperature of the unsaturated parcel of air at an elevation of 3000 meters is -5°C. Using the dry adiabatic lapse rate of 1°C/100 meters, we get: Altitude = 3000 meters Dry adiabatic lapse rate = 1°C/100 metersInitial temperature (T_0) = -5°CT = -5°C + (1°C/100 meters × 3000 meters)T = -5°C + 30°CT = 25°CAfter descending to the surface, the temperature of the unsaturated parcel of air is +11°C, according to the above calculation.

For more information follow the link: https://brainly.com/question/11464844

#SPJ11

an earth satellite is in an elliptical orbit. the satellite travels fastest when it is farthest from the earth. nearest the earth. it travels at constant speed everywhere in orbit.

Answers

An earth satellite is in an elliptical orbit. The satellite travels fastest when it is nearest to the earth.

A satellite is an object which revolves around a planet, and an elliptical orbit is one where the distance from the central body varies from time to time.

The satellite covers the maximum distance from the central body at the endpoints of the major axis and it covers the minimum distance at the endpoints of the minor axis.

When an earth satellite is in an elliptical orbit, the gravitational force varies with distance from the earth's surface. Therefore, the speed of the satellite varies with distance.

Therefore, the option "nearest to the earth" is correct.

Learn more about elliptical orbit here:

https://brainly.com/question/29681138

#SPJ11

A typical meteor is created by a particle about the size of a ______. pea. A rock found on Earth that crashed down from space is called ______. a meteorite.

Answers

A typical meteor is created by a particle about the size of a small pea, ranging from a few millimeters to several centimeters in diameter.

These particles, known as meteoroids, originate from asteroids, comets, or other bodies in the solar system and enter Earth's atmosphere at high speeds, typically around 20 kilometers per second.

As they travel through the atmosphere, they experience high levels of friction, causing them to heat up and produce a bright trail of light known as a meteor or shooting star. If the meteoroid survives its journey through the atmosphere and impacts Earth's surface, it is then called a meteorite.

Meteorites can provide valuable information about the formation and evolution of our solar system and the materials that make up our planet.

To learn more about meteor refer to:

brainly.com/question/28208332

#SPJ4

Star A is identical to Star B, but Star A is twice as far from us as Star B. Therefore, _______________.

Answers

Star A's light will take longer to reach us.

X-rays carry more energy than visible light. Compare the frequencies and wavelengths of these two types of EM radiation.

Answers

X-rays carry more energy than visible light. The frequency of X-rays is much higher than that of visible light, and their wavelengths are much shorter.

Electromagnetic waves are waves that transport electric and magnetic fields, fluctuating together in perpendicular planes. They are generated by the oscillation of charged particles, such as electrons. Electromagnetic radiation, often known as EM radiation, is another term for electromagnetic waves. X-rays are part of the electromagnetic spectrum that has a shorter wavelength than visible light.

The frequency of X-rays is much higher than that of visible light, and their wavelengths are much shorter. As a result, X-rays are more energetic and can penetrate through matter more easily than visible light. Visible light, on the other hand, has a longer wavelength and a lower frequency than X-rays. It is referred to as "visible" light because humans can see it. Visible light has a wavelength range of around 400-700 nanometers, with the red end of the spectrum having longer wavelengths and the violet end having shorter wavelengths.

For more question on visible light click on

https://brainly.com/question/26970988

#SPJ11

A model of a helicopter rotor has four blades, each of length 4.00m from the central shaft to the blade tip. The model is rotated in a wind tunnel at a rotational speed of 540rev/min.
A. What is the linear speed of the blade tip?
B. What is the radial acceleration of the blade tip expressed as a multiple of the acceleration of gravity, g?
Circular Motion:
The motion of the object along the circumference of the fixed radius circular path about the stationary specified axis is called the rotational motion or circular motion of the object. The linear speed of any particle on the body is tangential to the circular path. The inward acceleration possessed by the particle depends upon the tangential speed and the radius of rotation of the particle, and it is known as the radial acceleration.

Answers

The linear speed of the tip of the blade is 13571.68\ m/min and the radial acceleration is 4693947.63.

The linear speed of the blade tip can be calculated using the formula:

[tex]linear \ speed = (rotational \ speed) \times (2 \times \pi \times radius)[/tex]

where the radius is the length of the blade, which is 4.00m. Therefore, the linear speed of the blade tip is:

[tex]linear \ speed = (540 \ rev/min) \times (2 \times \pi \times 4.00\ m/rev)[/tex]

[tex]linear \ speed = 13571.68\m/min[/tex]

The radial acceleration of the blade tip can be calculated using the formula:

[tex]radial\  acceleration = (linear\  speed)^2 / radius[/tex]

where the radius is the length of the blade, which is 4.00 m. Therefore, the radial acceleration of the blade tip is:

[tex]radial \ acceleration = (linear \ speed)^2 / radius[/tex]

[tex]radial \ acceleration = 46047626.29 \ m/min^2[/tex]

To express this as a multiple of the acceleration of gravity, we divide the radial acceleration by g:

[tex](radial \ acceleration) / g = (46047626.29\m/min^2) / 9.81 \ m/s^2[/tex]

[tex](radial \ acceleration) / g = 4693947.63[/tex]

Therefore, the radial acceleration of the blade tip is approximately 4693947.63 times the acceleration of gravity.

Learn more about acceleration:

https://brainly.com/question/460763

#SPJ11

greenhouse gases in the atmosphere selectively absorb radiation at what wavelength?

Answers

Answer:

They absorb radiation in the ultraviolet area - somewhat less than 4000 Angstroms or 400 mμ.

The reduction of the ozone layer in the upper atmosphere causes more of the shorter wavelengths to reach the surface  of the earth and then to be reradiated at longer wavelengths causing global warming.

p1. an airplane is flying at an altitude of 20,000 ft. what is the local atmospheric pressure at this altitude? what pressure differential would be required to to keep the passengers comfortable? what discomfort might the passengers feel if the cabin pressure drops below this? explain your answer.

Answers

When an airplane is flying at an altitude of 20,000 ft, the local atmospheric pressure is 3.3 psi.

What is the local atmospheric pressure?

The pressure differential that would be required to keep the passengers comfortable is 0.5 to 0.7 psi. If the cabin pressure drops below this, the passengers might feel discomfort, such as ear pain, shortness of breath, or headache.

Atmospheric pressure decreases as altitude increases. At sea level, atmospheric pressure is approximately 14.7 psi. At an altitude of 20,000 ft, atmospheric pressure is 3.3 psi. Therefore, an airplane flying at an altitude of 20,000 ft is experiencing a significantly lower atmospheric pressure than it would be on the ground.

To maintain passenger comfort and prevent discomfort, the airplane's cabin pressure must be maintained at a level closer to that of the ground. The pressure differential that would be required to keep the passengers comfortable is 0.5 to 0.7 psi.

Learn more about Atmospheric pressure here:

https://brainly.com/question/28310375

#SPJ11

calculate the magnitude and direction of the electric field which would be needed to balance the weight of (a) an electron, (b) a proton, (c) an oil drop

Answers

The magnitude and direction of the electric field which would be needed to balance the weight of an electron, proton, and oil drop can be calculated using the following equation: Electric field (E) = (Force of gravity (Fg)) / (Charge (q)) is 1.59 × 10⁵ N/C.

What is the magnitude and direction of the electric field?

For an electron, q = -1.6 × 10⁻¹⁹ C and Fg = 9.81 N. Therefore, the magnitude of the electric field needed to balance the weight of an electron is:

E = (9.81 N) / (-1.6 × 10⁻¹⁹ C) = 6.13 × 10¹⁸ N/C. For a proton, q = +1.6 × 10⁻¹⁹ C and Fg = 9.81 N.

Therefore, the magnitude of the electric field needed to balance the weight of a proton is:

E = (9.81 N) / (1.6 × 10⁻¹⁹ C) = 6.13 × 10¹⁸ N/C

For an oil drop, q = +6.2 × 10⁻¹⁴ C and Fg = 9.81 N.

Therefore, the magnitude of the electric field needed to balance the weight of an oil drop is:

E = (9.81 N) / (6.2 × 10⁻¹⁴ C) = 1.59 × 10⁵ N/C

The direction of the electric field for all three objects is the same, upward. The direction of the electric field is upward or downward depending on the charge of the oil drop. If the oil drop is negatively charged, then the electric field will be upward, and if the oil drop is positively charged, then the electric field will be downward.

Read more about gravity here:

https://brainly.com/question/940770

#SPJ11

A small, 200 g cart is moving at 1.70 m/s on a frictionless track when it collides with a larger, 2.00 kg cart at rest. After the collision, the small cart recoils at 0.830 m/sWhat is the speed of the large cart after the collision? Express your answer to three significant figures and include the appropriate units.

Answers

The speed of the large cart after the collision would be 0.087 m/s

Momentum problem

We can use the law of conservation of momentum to solve this problem, which states that the total momentum of a closed system remains constant before and after a collision.

The momentum before the collision is given by:

p1 = m1v1 + m2v2

where m1 = 0.2 kg is the mass of the small cart, v1 = 1.70 m/s is its velocity before the collision, m2 = 2.00 kg is the mass of the large cart, and v2 = 0 m/s is its velocity before the collision.

p1 = (0.2 kg)(1.70 m/s) + (2.00 kg)(0 m/s) = 0.34 kg m/s

The momentum after the collision is also given by:

p2 = m1v1' + m2v2'

where v1' = -0.830 m/s is the velocity of the small cart after the collision (since it recoils in the opposite direction), and we want to find v2', the velocity of the large cart after the collision.

p2 = (0.2 kg)(-0.830 m/s) + (2.00 kg)(v2')

Since momentum is conserved, we have:

p1 = p2

0.34 kg m/s = (0.2 kg)(-0.830 m/s) + (2.00 kg)(v2')

Solving for v2', we get:

v2' = (0.34 kg m/s - 0.166 kg m/s) / 2.00 kg

v2' = 0.087 m/s

Therefore, the speed of the large cart after the collision is 0.087 m/s, to three significant figures.

More on momentum can be found here: https://brainly.com/question/30487676

#SPJ1

The circuit below contains a battery with negligible internal resistance, three resistors, and a switch. The value of resistor R1R1 is 2 Ohms.a) When the switch is open, what is the value of the current passing through R1R1 ?
b) When the switch is closed, what is the value of the current passing through R1R1?

Answers

a) When the switch is open, the value of the current passing through R1 is calculated by using Ohm's Law that states that the current through a conductor between two points is directly proportional to the voltage across the two points.

The equation is written as:

V = IR

Where, V is the voltage, I is the current and R is the resistance.

In this case, the resistance is

R1 = 2Ω.R1

is the only resistor in the circuit when the switch is open. Therefore, the current through R1 is given as:

I = V / R1

where, V is the voltage provided by the battery.

I = 12V / 2ΩI = 6 A

Therefore, when the switch is open, the value of the current passing through R1 is 6 A.

b) When the switch is closed, the equivalent resistance of the circuit can be calculated by adding the resistances of the three resistors.

R = R1 + R2 + R3

where, R1 = 2Ω, R2 = 5Ω, and R3 = 8Ω.

R = 2Ω + 5Ω + 8ΩR = 15Ω

Now, the current through the resistor can be calculated by using Ohm's Law that states that the current through a conductor between two points is directly proportional to the voltage across the two points.

I = V / R

where, V is the voltage provided by the battery which is 12 V.

I = 12V / 15ΩI = 0.8 A

Therefore, when the switch is closed, the value of the current passing through R1 is 0.8 A.

"internal resistance", https://brainly.com/question/31131378

#SPJ11

a car of mass 772 kg is traveling 21.4 m/s when the driver applies the brakes, which lock the wheels. the car skids for 4.87 s in the positive x-direction before coming to rest.

Answers

A car of mass 772 kg is traveling at 21.4 m/s when the driver applies the brakes, which lock the wheels. The car skids for 4.87 s in the positive x-direction before coming to rest.

The required calculations can be performed using the following equations:

1. F = ma2. v = u + at3. s = ut + (1/2) at^2

Here, u = 21.4 m/s (initial velocity)

a = (-μg) = (-0.5 x 9.8) = -4.9 m/s^2 (deceleration due to the lock)

μ = 0.5 (frictional coefficient between road and tires)

g = 9.8 m/s^2 (acceleration due to gravity)

The normal force is given as:

N = mgN = 772 x 9.8N = 7580.6 N

Now, the force due to friction can be calculated:

F = μN = 0.5 x 7580.6F = 3790.3 N

Therefore, acceleration can be calculated as follows:

F = ma=> a = F/m=> a = 3790.3/772a = 4.91 m/s^2

Now, the final velocity can be calculated as:

v = u + at=> v = 21.4 + (-4.91 x 4.87)v = -0.384 m/s

A negative sign indicates that the car is moving in the negative x-direction.

In order to calculate the distance traveled, we will use the formula:s = ut + (1/2) at^2=> s = 21.4 x 4.87 + (1/2) x (-4.91) x (4.87)^2s = 52.79 mT

herefore, the car skids for 52.79 m in the negative x-direction before coming to rest.

Learn more about force at  brainly.com/question/13191643

#SPJ11

a suspicious-looking man runs as fast as he can along a moving sidewalk from one end to the other, taking 2.00 s. then security agents appear, and the man runs as fast as he can back along the sidewalk to his starting point, taking 12.6 s. what is the ratio of the man's running speed to the sidewalk's speed?

Answers

The ratio of the man's running speed to the sidewalk's speed is 6.3.

To solve the problem, we can start by using the formula:

distance = speed × time

Let's assume that the length of the moving sidewalk is L, and the speed of the man is v and the speed of the sidewalk is u.

When the man runs along the sidewalk from one end to the other, his speed relative to the ground is (v + u), and the distance he covers is L. Therefore, we have:

L = (v + u) × 2.00 s

When the man runs back along the sidewalk to his starting point, his speed relative to the ground is (v - u), and the distance he covers is also L. Therefore, we have:

L = (v - u) × 12.6 s

Now we can solve for v/u by dividing the two equations:

(v + u)/(v - u) = 2.00/12.6

Solving for v/u gives:

v/u = (2.00/12.6 + 1)/(2.00/12.6 - 1) = 6.3

Therefore, the ratio of the man's running speed to the sidewalk's speed is 6.3.

For more similar questions on distance:

brainly.com/question/12356021

#SPJ11

According to Huygens, how does every point on a wavefront behave?

Answers

"According to Huygens, every point on a wavefront behaves as a source of secondary wavelets."

Every point on the wavefront acts as a secondary wavefront and can be thought of as the origin of secondary wavelets, which move in all directions at the same speed as the waves.

Every point on a wave front may be thought of as a source of secondary waves, according to Huygens' theory. Diffraction is interference generated by multiple waves, whereas interference is used to describe the superposition of two waves. The peripheral surface of each of these secondary wavelets is the new wavefront. So, the technique used to determine the frequency is geometrical.

To know more about wavefront:

https://brainly.com/question/29456147

#SPJ4

to be credible an rca must be internally consistent

Answers

Be regularly applied, have strong backing from the organization's leadership, involve people who are close to you, and take into account relevant literature and EBM.

What is RCA?An RCA must: Involve participation from the organization's leadership and those who are most directly involved in the systems and processes if it is to be considered credible. Maintain intrinsic coherence. Take into account any pertinent literature.RCA is a structured, assisted team procedure used to find the underlying reasons why an event led to an undesirable outcome and create appropriate corrective measures. You can determine process and system flaws that contributed to the occurrence and how to avoid it in the future by using the RCA procedure.

For more information on root cause analysis kindly visit to

https://brainly.com/question/28960819

#SPJ1

Complete question: to be credible an rca must be _______.

Two asteroids, drifting at constant velocity, collide. The masses and velocities of the asteroids before the collision are indicated in the figure. During the collision, is the magnitude of the force of asteroid A on asteroid B greater than, less than, or equal to the magnitude of the force of asteroid B on asteroid A?

Answers

Answer:a) The momentum of asteroid A is  and the momentum of asteroid B is  .b) At the time of collision, the magnitude of force of asteroid A on asteroid B is greater than the magnitude of force of asteroid B on asteroid A.c) The total momentum of the two asteroids at the time of collision is 

Explanation:

A particle of charge q is fixed at point P, and a second particle of mass m and the same charge q is initially held a distance r1 from P. The second particle is then released. Determine its speed when it is a distance r2 from P. Let q=3.1 μC,m=20 mg,r1=0.90 mm, and r2=2.5 mm.

Answers

The speed of the charge when the distance r₂ from P is 2.5 mm is about 3.80 × 10⁶ m/s. This is because the energy of the charge remains conserved.

What is the speed of charge?

The expression for the electric potential energy of two point charges separated by a distance r is given as:

U = k × q₁ × q₂/r

where, U = electric potential energy, k = Coulomb's constant (9 × 10⁹ Nm²/C²)

q₁ and q₂ are the charges

r = separation between the charges

In the given problem, a particle of charge q is fixed at point P, and a second particle of mass m and the same charge q is initially held a distance r₁ from P. The second particle is then released.

Therefore, the electric potential energy of the second particle, when it is held at a distance r₁ from P is given as:

U = k × q²/r₁

Mass of the second particle, m = 20 mg

Let the speed of the second particle when it is a distance r₂ from P be v. The initial energy of the second particle when it is held at a distance r₁ from P is all converted to kinetic energy when it reaches a distance r₂ from P.

Energy gained by the second particle is given by the difference in electric potential energy between the two distances, U = k × q²(1/r₁ - 1/r₂)

At a distance r₂ from P, the kinetic energy of the second particle is given as:

K.E = (1/2) × m × v²

According to the principle of conservation of energy, the total energy of the second particle remains constant.

U + K.E = constant

m × v²/2 + k × q²(1/r₁ - 1/r₂) = k × q²/r₁

v = sqrt(2 × k × q² /r₁ × (1/r₂ - 1/r₁) / m)

Substituting the given values in the above expression,

v = sqrt(2 × 9 × 10⁹ Nm²/C² × (3.1 μC)²/0.9 mm × (1/2.5 mm - 1/0.9 mm) / (20 × 10⁻⁶ kg)) = 3.80 × 10⁶ m/s

Therefore, the speed of the second particle when it is a distance r₂ from P is 3.80 × 10⁶ m/s.

Learn more about Speed here:

https://brainly.com/question/30256231

#SPJ11

What two planets are coming together?

Answers

The two planets that are coming together are Saturn and Jupiter. On December 21st, 2020, the two planets will be at their closest point, an event known as the Great Conjunction.

To observe the Great Conjunction, look in the direction of the southwest sky shortly after sunset. The two planets will appear to be close together and will look like one bright star. Make sure to look for them with binoculars or a telescope if you can, as you'll get a better view.The Great Conjunction occurs because Saturn and Jupiter have different orbital periods. Jupiter completes its orbit around the Sun every 11.86 Earth years, while Saturn takes 29.5 Earth years. This means that their orbits don't intersect and they don't come this close together very often. The next time the two planets will come this close together will be in 2080, so be sure to take advantage of this rare opportunity to witness this event in 2020.

For more questions on Great Conjunction

https://brainly.com/question/21950257

#SPJ11

A triangular shape is made from identical balls and identical rigid, massless rods as shown. The moment of inertia about the a, b, and c axes is Ia, Ib, and Ic respectively.
1)Which of the following orderings is correct?
Ia > Ib > Ic
Ia > Ic > Ib
Ib > Ia > Ic

Answers

Option B. If the The moment of inertia about the a, b, and c axes is Ia, Ib, and Ic respectively the correct ordering is given as Ia > Ic > Ib

What is the moment of inertia?

In physics, the moment of inertia is a quantity that describes an object's resistance to rotational motion about a given axis. It depends on the mass of the object and how the mass is distributed relative to the axis of rotation.

The moment of inertia is typically denoted by the symbol "I" and has units of kilograms meters squared (kg•m²) in the SI system. The moment of inertia is an important concept in mechanics and is used to analyze the motion of rotating objects, such as wheels, gyroscopes, and other mechanical systems.

To get the distance, we would have that : the distance that exists between a and b = L

then the distance between b and c = L

We would have Ia to be given as

2m * 2L²

= 8ml²

Ib = 3m * L² =  3m L²

Ic = 1m * (2L)² =  4mL²

In order of greatness we would have the ordering as Ia > Ic > Ib

Read more on moment of inertia here:https://brainly.com/question/14460640

#SPJ1

Sam, whose mass is 72 kg, takes off across level snow on his jet-powered skis. The skis have a thrust of 230 N and a coefficient of kinetic friction on snow of 0.1. Unfortunately, the skis run out of fuel after only 10 s. a) What is Sam's top speed? b) How far has Sam traveled when he finally stops?

Answers

a) To find Sam's top speed, we need to consider the forces acting on him. Since the coefficient of kinetic friction is 0.1, we can calculate the frictional force by multiplying the mass of Sam (72 kg) and gravitational acceleration (9.81 m/s2) by the coefficient of kinetic friction. This gives us a frictional force of 70.92 N. The force of thrust (230 N) is greater than the frictional force, so the net force acting on Sam is 230 - 70.92 = 159.08 N.

We can then use Newton's Second Law to calculate Sam's top speed. Force is equal to the mass of an object multiplied by its acceleration, so we can rearrange this equation to give us acceleration = Force / Mass. This means that Sam's acceleration is 159.08 / 72 = 2.2 m/s2. We can use the equation v2 = u2 + 2as to calculate Sam's top speed. u is initial velocity, which is 0, a is acceleration which is 2.2 m/s2, and s is the distance traveled. Sam's top speed is 7.4 m/s.

b) To calculate the distance Sam traveled, we can use the equation s = ut + 0.5at2. u is initial velocity (0) a is acceleration (2.2 m/s2) and t is time (10 s). This gives us a distance of 110 m.

Learn more about kinetic friction at  brainly.com/question/13754413

#SPJ11

Sam's top speed is 17.9 m/s. And Sam has traveled 179 m when he finally stops.

Sam's top speed can be found by solving the following equation:
F = ma = (72 kg) (a) = 230 N

a = 230/72 = 3.19 m/s2

Using the equation v2 = vo2 + 2ad, where vo is the initial velocity, a is the acceleration, and d is the distance traveled, we can find the final velocity, v, at the end of the 10 seconds:
v2 = 02 + 2(3.19 m/s2) (10 s)
v = 17.9 m/s

Therefore, Sam's top speed is 17.9 m/s.

Sam has traveled a distance of d = vt, where v is the final velocity and t is the time of 10 seconds, when the skis run out of fuel.

d = (17.9 m/s)(10 s) = 179 m

Therefore, Sam has traveled 179 m when he finally stops.

Learn more about coefficient of kinetic friction: brainly.com/question/20241845

#SPJ11

Other Questions
How did the Civil War and Reconstruction affect the rights of Blacks in the United States? Complete the following statement.After the Civil War, three amendments to the Constitution __________ civil rights for African Americans. Once Reconstruction ended, however ______________ severely restricted the rights of African Americans, with ______________ states taking the lead in segregating many public facilities. in the meta-analysis regarding cross-cultural leadership dimension called the globe project, which of the following traits was identified as being universally undesirable? 34 The figure shows the velocity versus time curve for a car traveling along a straight line. Time (s) Which of the following statements is false? a The magnitude of the net force acting during interval A is less than that during C. b. No net force acts on the car during interval B. c. A net force acts on the car during intervals A and C. d. Opposing forces may be acting on the car during interval C. juan invested $20,000 in a mutual fund 5 yr ago. today his investment is worth $29,935. find the effective annual rate of return on his investment over the 5-yr period. (round your answer to two decimal places.) Translate this to English: Mon Amie ne vois-tu pas que j'essaie de me dtendre mais je ne peux pas faire a si tu fais jaillir l'eau dans ma direction toutes les 5 secondes ! for our ohm's law plot, what goes on each axis to get a slope equal to exactly the equivalent resistance? note: the lab manual instructs us to make a plot of inverse resistance (1/r), is that the best plotting method?Y-axis = _____X-axis = _____ A single point insert is used to turn a cylinder of any diameter at 2,129 rpm under a feed rate of 2.5 in/min. Calculate the feed in in/rev. Suppose I go on a fishing trip where I visit 4 lakes, lakes L1, L2, L3, and L4. Let C1 be the event that I catch a fish from lake L1. Let C2 be the event that I catch a fish from lake L2. LetC3be the event that I catch a fish from lake L3. LetC4be the event that I catch a fish from lake L4. I am a poor fisherman, so I am happy if I catch at least one fish. The lakes are far enough apart so that whether I catch a fish in any lake is independent from catching a fish in any other lake. There is a.3probability that C1 happens, a .4 probability that C2 happens, a .2 probability that C3 happens and a.2probability that C4 happens a. What is the probability I catch fish in all 4 lakes? b. What is the probability I do not catch any fish at all? c. What is the probability that I catch at least one fish? (I am happy.) d. What is the probability that I catch fish in Lake L1 and lake L2? e. What is the probability that I catch fish in lake L1 or lake L2? f. What is the probability that I catch fish in exactly one lake? Add any comments below. Consider the line that passes through the point and is parallel to the given vector. (4, -1, 9) -1, 4, -2 symmetric equations for the line. -(x - 4) = y+1/ 4 = z9 /2 . (b) Find the points in which the line intersects the coordinate planes. what is the molarity of a calcium carbonate solution if 2.00 moles of calcium carbonate are dissolved in 125 ml of water? At the conclusion of meiosis in plants the end products are always four haploid A) spores. B) eggs. C) sperm. D) seeds. E) gametes. a ball is dropped a from a height of 16ft each time it hits the ground what is the total vertical distance it traveled after it came to rest Senators can serve for how many numbers of terms? the last stage of one complete turn of the calvin cycle involves regeneration of . group of answer choices sugar co2 g3p rubp Specifying a clear objective for an advertising campaign help in selecting ... advertising is most helpful in selecting media and evaluating a campaign? will give brainlliest and 20pts please help A select list of transactions for Anuradha's Goals follows: (Click the icon to view the transactions. ) For each transaction, identify what type of adjusting entry would be needed. Select from the following four types of adjusting entries: deferred expense, deferred revenue, accrued expense, and accrued revenue Apr. 1 Paid six months of rent, $4,800. Received $1,200 from customer for six month service contract that began 10 April 1. 15 Purchased a computer for $1,000. 18 Purchased $300 of office supplies on account 30 Work performed but not yet billed to customer, $500 30 Employees earned $600 in salaries that will be paid May 2. Accrued expense Accrued revenue Deferred expense Deferred revenue a circle of radius r centered at (r,0), with r < r, is rotated about the y-axis. find the surface area of the resulting solid. Use the given information below to answer the questions. Show ALL your work.The heights of young men follow a Normal distribution with mean 69.3 inches and standard deviation 2.8 inches. The heights of young women follow a Normal distribution with mean 64.5 inches and standard deviation 2.5 inches.LetM = the height of a randomly selected young manW = the height of a randomly selected young woman1. Describe the shape, center, and spread of the distribution of M-W.2. Find the probability that a randomly selected young man is at least 2 inches taller than a randomly selected young woman. which of the following physiological variables is influenced by BOTH sympathetic and parasympathetic Nervous system activation?a. cardiac pre-ejection periodb. skin conductancec. cardiac interbeat intervald. none of the above