calculate the electrostatic force between 1nc and 1nc charges at a distance of 1 m from each other. do not forget to mention the direction of the force, too.

Answers

Answer 1

The electrostatic force between 1nc and 1nc charges at a distance of 1 m from each other is 9.0 × 10^-9 N. The direction of the force is given by Coulomb's law and is along the line joining the two charges. It is either repulsive or attractive based on the type of the charges.

What is Coulomb's law? Coulomb's law is an equation used to calculate the electrostatic force between two charged particles. According to this law, the force between two point charges is proportional to the product of their charges and inversely proportional to the square of the distance between them. The equation for Coulomb's law is given by:

F = k * (q1 * q2) / r^2

Where F is the electrostatic force,k is Coulomb's constant,q1 and q2 are the charges of the particles, and r is the distance between the particles.

Given,

Charge of particle 1, q1 = 1 nc

Charge of particle 2, q2 = 1

distance between particles, r = 1

coulomb's constant, k = 9 × 10^9 N m^2/C^2

Now, we can use Coulomb's law to calculate the electrostatic force between the two charges. Substituting the given values in the equation:

F = k * (q1 * q2) / r^2= 9 × 10^9 N m^2/C^2 * (1 × 10^-9 C) * (1 × 10^-9 C) / (1 m)^2= 9.0 × 10^-9 N

Thus, the electrostatic force between 1nc and 1nc charges at a distance of 1 m from each other is 9.0 × 10^-9 N. The direction of the force is given by Coulomb's law and is along the line joining the two charges. It is either repulsive or attractive based on the type of the charges.

Learn more about  electrostatic force  at brainly.com/question/24013868

#SPJ11


Related Questions

an object is in uniform circular motion. if you double its linear speed, how would the centripetal acceleration change?

Answers

An object is in a uniform circular motion. If you double its linear speed, the centripetal acceleration would increase four times.

The relationship between centripetal acceleration, speed, and radius of curvature of circular motion is given by:ac=v²/r where v = speed and r = radius of curvature of circular motion.

Centripetal acceleration is given by:ac=ω²rwhere ω is the angular velocity of circular motion. Substituting ω = v/r in the above equation, we get ac = v²/r.

Therefore, the centripetal acceleration is directly proportional to the square of the speed of an object in a circular motion.

Read more about the topic of Centripetal acceleration:

https://brainly.com/question/79801

#SPJ11

To use energy economically is to save energy. Write this statement logically.(explain)

Answers

If we want to save energy, then we should use energy economically.

This statement can be written in the form of a logical statement using the conditional "if...then" structure. The "if" part of the statement is the condition that we want to achieve, which is "to save energy." The "then" part of the statement is the action that we should take in order to achieve that condition, which is "to use energy economically."

The statement is logical because it establishes a clear relationship between the condition and the action that will lead to the desired outcome. In this case, if we use energy economically, we will be able to save energy. Therefore, the statement is a valid and reasonable assertion about how to achieve the goal of saving energy.

Why don't you have to know how the wire is bent? (Select all that apply.)a. E is dependent on the length L of the wire which only applies to the segment of the wire that is not bent. b. E is not dependent on how the wire is bent, only the diameter of the wire is needed. c. Since conventional current flows in the direction of E^rightarrow, E is the same in every part of the wire with uniform properties. d, E must be parallel to the wire at every location even if the wire twists and turns.

Answers

Options b and c are correct. These two are the reasons that indicate why one doesn't have to know how the wire is bent.

An electric field is a vector field created by a charged object. When a charged particle interacts with the electric field of another charged particle, it will experience a force, which can be either attractive or repulsive. The electric field at a given point in space is determined by the charge and distribution of charges in the space, as well as by the location and orientation of the observer. The strength of the electric field is measured in units of volts per meter (V/m).

Electric field (E) is not dependent on how the wire is bent, only the diameter of the wire is needed. And since conventional current flows in the direction of [tex]E\rightarrow[/tex], E is the same in every part of the wire with uniform properties. This implies that E must be parallel to the wire at every location even if the wire twists and turns. Therefore, even if the wire is bent, one need not know its shape, as long as the properties remain constant.

Thus, options b and c are the correct answers.

Learn more about electric current:

https://brainly.com/question/1100341

#SPJ11

arrange 3 identical resistors in all the possible combinations and calculate the equivalent resistance. the resistance for each resistor is 200 ohms

Answers

Explanation:

All R's in series:    just add them together : 200 + 200 + 200 Ω = 600Ω

One in series with two in parallel :

   = 200 Ω   +    200*200/(200+200) Ω = 300Ω

All three in parallel :

    R = 1 / (1/200 + 1/200 + 1/200) = 66.7 Ω

s Mechanical Energy Conserved?
Select all the correct statements about the mechanical energy of the cases below (select all that are true).
MEM2_QB1_Q1_Fig.svg
Situations for energy conservation
Case (I) : A block slides down a frictionless ramp, hits a second block on a frictionless surface, and sticks to it.
Case (II) : A block sitting on a rough surface is compressed against a spring and then released.
Case (III): A block is tied to a massless string and swings down from a certain height.
Case (IV): A cannonball is launched by a cannon on the edge of a cliff, air resistance is negligible.
Pick all of the correct answers
In Case I the ME of the two blocks is conserved because all the surfaces are frictionless and there are no external forces on either block.
In Case III the ME of the block is not conserved because tension from the string is a non-conservative external force.
In Case II the ME of the spring and the block system is not conserved because the surface is rough.
In Case IV, after the cannonball is launched and before the cannonball hits the ground, the ME of the system is not conserved because there is an external force from the cannon on the ball that makes it fly forward.
None of the statements are correct.

Answers

The mechanical energy of the systems in all four cases is conserved, except for in Case III and Case IV.

In Case I, the mechanical energy of the two blocks is conserved because the surface is frictionless and there are no external forces on either block.

In Case III, the mechanical energy of the block is not conserved because tension from the string is a non-conservative external force.

In Case II, the mechanical energy of the spring and block system is not conserved because the surface is rough.

In Case IV, after the cannonball is launched and before it hits the ground, the mechanical energy of the system is not conserved because there is an external force from the cannon on the ball that makes it fly forward.

To learn more about "mechanical energy", https://brainly.com/question/30403434

#SPJ11

a binary star system consists of two stars of masses m1 and m2 . the stars, which gravitationally attract each other, revolve around the center of mass of the system. the star with mass m1 has a centripetal acceleration of magnitude a1 . note that you do not need to understand universal gravitation to solve this problem. part a find a2 , the magnitude of the centripetal acceleration of the star with mass m2 . express the acceleration in terms of quantities given in the problem introduction. view available hint(s)for part a activate to select the appropriates template from the following choices. operate up and down arrow for selection and press enter to choose the input value typeactivate to select the appropriates symbol from the following choices. operate up and down arrow for selection and press enter to choose the input value type a2

Answers

The magnitude of the centripetal acceleration of the star with mass m2 is:

[tex]a_2 = (m_1/m_2) \times a_1 = (m_1/m_2) \times a1[/tex]

In a binary star system, the two stars revolve around their common center of mass. Let's call this center of mass "C".

According to Newton's second law, the centripetal acceleration of each star is related to the gravitational force between the two stars:

[tex]a_1 = F_1/m_1[/tex]

[tex]a_2 = F_2/m_2[/tex]

where F1 and F2 are the gravitational forces exerted by each star on the other.

Since the two stars are in orbit around each other, the gravitational force between them provides the necessary centripetal force:

F1 = F2 = F

where F is the gravitational force between the two stars.

The magnitude of the centripetal acceleration of the star with mass m2, a2, can be calculated using the equation:
[tex]m_1a_1=m_2a_2[/tex]
[tex]a_2 = (m_1/m_2) \times a_1[/tex]

where m1 is the mass of the first star, m2 is the mass of the second star, and a1 is the magnitude of the centripetal acceleration of the star with mass m1. Therefore, the magnitude of the centripetal acceleration of the star with mass m2 is:
[tex]a_2 = (m_1/m_2) \times a_1 = (m_1/m_2) \times a_1[/tex]

Learn more about centripetal acceleration:

https://brainly.com/question/19246433

#SPJ11

a 3.2 kilogram hoop starts from rest at a height 1.40 m above the base of an inclined plane and rolls down under the influence of gravity. what is the linear speed of the hoop's center of mass just as the hoop leaves the incline and rolls onto a horizontal surface? neglect friction.

Answers

The linear speed of the hoop's center of mass just as the hoop leaves the incline and rolls onto a horizontal surface can be calculated using the equation for conservation of energy is  5.41 m/s.

What is the linear speed of the hoop's center?

The equation is KEf = KEi + PEi.

where, KEf is the kinetic energy of the hoop just as it leaves the incline and KEi is the initial kinetic energy of the hoop at the beginning of the incline and PEi is the initial potential energy of the hoop at the beginning of the incline. The initial potential energy of the hoop is equal to the mass of the hoop (3.2 kg) multiplied by the acceleration due to gravity (9.8 m/s2) multiplied by the height of the incline (1.40 m):

PEi = 3.2 kg × 9.8 m/s² × 1.40 m = 44.56 J

The initial kinetic energy of the hoop is equal to 0, since the hoop is starting from rest.

Therefore, the equation for conservation of energy can be written as follows:

KEf = 0 + 44.56 J

The kinetic energy of the hoop just as it leaves the incline is equal to the mass of the hoop (3.2 kg) multiplied by the linear speed of the hoop's center of mass (v) squared, divided by two:

KEf = 3.2 kg × (v²) / 2

By combining the two equations above, we can solve for the linear speed of the hoop's center of mass just as the hoop leaves the incline and rolls onto a horizontal surface:

v = √(2 × 44.56 J / 3.2 kg) = 5.41 m/s

Therefore, the linear speed of the hoop's center of mass just as the hoop leaves the incline and rolls onto a horizontal surface is 5.41 m/s.

Read more about the mass here:

https://brainly.com/question/19385703

#SPJ11

Let the mass of the sled be m and the magnitude of the net force acting on the sled be Fnet . The sled starts from rest. Consider an interval of time during which the sled covers a distance s and the speed of the sled increases from v1 to v2 . We will use this information to find the relationship between the work done by the net force (otherwise known as the net work) and the change in the kinetic energy of the sled. Use W = F s cos (theta) to find the net work Wnet done on the sled. Express your answer in terms of some or all of the variables m ,v1 and v2 .

Answers

Total work done is Wnet = 1/2mv₂² - 1/2mv₁²

Let the mass of the sled be m and the magnitude of the net force acting on the sled be Fnet .

The sled starts from rest. Consider an interval of time during which the sled covers a distance s and the speed of the sled increases from v₁ to v₂ . We will use this information to find the relationship between the work done by the net force (otherwise known as the net work) and the change in the kinetic energy of the sled.

Use W = F s cos (theta) to find the net work Wnet done on the sled. Express your answer in terms of some or all of the variables m ,v₁ and v₂.Using the work-energy principle, we can calculate the work done on an object in terms of its change in kinetic energy. Consider the sled being acted upon by a force Fnet.

W = ΔK is used to calculate the work done on the sled as it moves from rest to velocity v₁ and then to velocity v₂ over a distance s.

Considering the sled to be the system under study, we can write the net work done on the sled as Wnet = ΔK.Wnet = 1/2mv₂² - 1/2mv₁² = Fnet s cos θWnet = Fnet s cos θ = 1/2mv₂² - 1/2mv₁²

To know more about net force click on below link:

https://brainly.com/question/29261584#

#SPJ11

a satellite is shot into a low orbit around a newly discovered planet. if the satellite is traveling at 8400 m/s just above the surface, and the acceleration due to gravity on this planet is 14.4 m/s2 , what must be the planet's radius?

Answers

The planet's radius is approximately 2.13 × 10^6 meters.

Planet radius calculation.

To find the planet's radius, we can use the following formula:

v² = GM/r

where v is the satellite's velocity, G is the gravitational constant, M is the planet's mass, and r is the planet's radius.

Since the satellite is just above the surface of the planet, we can assume that r is equal to the sum of the planet's radius and the satellite's altitude above the surface. Let h be the altitude of the satellite above the planet's surface, then we have:

r = planet's radius + h

Substituting this expression for r into the equation above and solving for the planet's radius, we get:

r = GM/v² - h

where G = 6.6743 × 10^-11 Nm²/kg² is the gravitational constant.

Substituting the given values, we get:

r = (6.6743 × 10^-11 Nm²/kg²) * M / (8400 m/s)² - h

We can also use the formula for the acceleration due to gravity at the surface of a planet:

g = GM/r²

where g is the acceleration due to gravity at the planet's surface.

Solving for M in this equation, we get:

M = g * r² / G

Substituting the expression for r from above and solving for r, we get:

r = √(GM/g)

Substituting the given values, we get:

r = √((6.6743 × 10^-11 Nm²/kg²) * M / (14.4 m/s²))

Equating this expression for r with the previous one, we get:

(6.6743 × 10^-11 Nm²/kg²) * M / (8400 m/s)² - h = √((6.6743 × 10^-11 Nm²/kg²) * M / (14.4 m/s²))

Squaring both sides and rearranging, we get:

M = (8400 m/s)² * (14.4 m/s²) * h / (2 * G)

Substituting this expression for M into the equation for r, we get:

r = √((8400 m/s)² * h / (2 * g))

Substituting the given values, we get:

r = √((8400 m/s)² * h / (2 * 14.4 m/s²))

r = 2.13 × 10^6 meters

Therefore, the planet's radius is approximately 2.13 × 10^6 meters using v² = GM/r.

Learn more about planet radius below.

https://brainly.com/question/16233311

#SPJ1

A ball rolls along a horizontal track in a certain time. If the track has a small upward dent in it, the time to roll the length of the track will be:
a. less
b. more
c. the same

Answers

Explanation:

More....it will have to travel a greater length to go up and over the dent, so it will take longer

write about cassiopeio​

Answers

Answer:

Cassiopeia was one of the 48 constellations listed by the 2nd-century Greek astronomer Ptolemy, and it remains one of the 88 modern constellations today. It is easily recognizable due to its distinctive 'W' shape, formed by five bright stars. Visible at latitudes between +90° and −20°.

Answer:

Cassiopeia is a fascinating constellation with a rich history and cultural significance, as well as an important object of study for astronomers and scientists

Explanation:

Cassiopeia is a constellation located in the northern hemisphere of the sky. It is one of the 88 constellations officially recognized by the International Astronomical Union (IAU). The constellation is named after Queen Cassiopeia of Greek mythology, who was the wife of King Cepheus and mother of Princess Andromeda.

The constellation is easily recognizable for its distinctive shape, which looks like a "W" or "M" depending on its orientation in the sky. This shape is formed by five bright stars, which represent the Queen's throne and her legs. The brightest star in the constellation is known as Gamma Cassiopeiae, which is a massive blue-white star located about 550 light-years away from Earth.

Cassiopeia is visible in the sky all year round from most locations in the northern hemisphere, and it can be easily found by looking for its distinctive shape. It is also part of the Milky Way galaxy, which makes it a popular target for amateur astronomers who want to observe the stars and galaxies in our own galaxy.

Overall, Cassiopeia is a fascinating constellation with a rich history and cultural significance, as well as an important object of study for astronomers and scientists.

According to the law of reflection, the angle of incidence equals the angle of reflection. Explain why the angle of incidence does not always equal the angle of refraction.

Answers

According to the law of reflection, the angle of incidence equals the angle of reflection. Due to Snell's law the angle of incidence does not always equal the angle of refraction.

According to the law of reflection, the angle of incidence is the angle between the incident ray and the normal of the reflecting surface, and the angle of reflection is the angle between the reflected ray and the normal. However, this does not apply to the law of refraction. When a ray of light passes through an interface between two materials with different refractive indices, such as air and water, the angle of incidence does not always equal the angle of refraction.

This is because of Snell's law, which states that the ratio of the sines of the angles of incidence and refraction is equal to the ratio of the refractive indices of the two materials. Since the refractive indices of different materials are different, the angle of refraction will be different than the angle of incidence. This means that when light passes through an interface between two materials with different refractive indices, the angle of incidence will not always equal the angle of refraction.

For example, when light passes through an interface between air and water, the angle of incidence will be different than the angle of refraction. The reason for this is that the refractive index of air is 1.0003, while the refractive index of water is 1.33. As a result, the ratio of the sines of the angles of incidence and refraction will not be equal, meaning that the angle of incidence will not equal the angle of refraction.

For similar question on Snell's law

https://brainly.com/question/10112549

#SPJ11

Engineers are designing a system by which a falling mass m imparts kinetic energy to a rotating uniform drum to which it is attached by thin, very light wire wrapped around the rim of the drum. There is no appreciable friction in the axle of the drum, and everything starts from rest. This system is being tested on earth, but it is to be used on Mars, where the acceleration due to gravity is 3.71 m/s
2
. In the earth tests, when m is set to 14.0 kg and allowed to fall through 5.00 m, it gives 150.0 J of kinetic energy to the drum.
A. If the system is operated on Mars, through what distance would the 14.0-kg mass have to fall to give the same amount of kinetic energy to the drum?
B. How fast would the 14.0-kg mass be moving on Mars just as the drum gained 150.0 J of kinetic energy?

Answers

The distance from which the 14 kg mass have to fall is 40.4 m and the speed at which the mass would be moving on Mars when the drum gains 150.0 J of kinetic energy is 11.7 m/s.

What is the distance?

The mass required to fall through a distance of 5.00 m is 14.0 kg. When it comes to the gravitational acceleration of Earth, the mass of 14.0 kg requires 150.0 J of kinetic energy to be supplied to the drum. On Mars, the same system would operate with a gravitational acceleration of 3.71 m/s².

To figure out the distance that the 14.0-kg mass will have to fall on Mars to give the same amount of kinetic energy, use the following formula:

PE = mgh

PE = KE (because KE = work done = energy given to the drum)

Substituting the values, we get:

KE = mgh (on earth)

KE = 150.0 J

m = 14.0 kg, g = 9.81 m/s², h = distance fallen

On Mars, we will need to use the formula:

KE = mgh

KE = mgh (on Mars)

KE = 150.0 J

m = 14.0 kg, g = 3.71 m/s², h = distance fallen

h = 40.4 m

KE = 1/2 mv² + mgh

where, KE = 150.0 J

m = 14.0 kg

g = 3.71 m/s²

h = distance fallen

Substituting the above values, we get:

KE = 1/2 mv² + mgh

150.0 = 1/2 × 14.0 × v² + 14.0 × 3.71 × h

Substituting the value of h from part (a) gives:

150.0 = 1/2 × 14.0 × v² + 14.0 × 3.71 × 40.4

Now we can solve the above equation for v:

v = 11.7 m/s

Therefore, the speed at which the mass would be moving on Mars when the drum gains 150.0 J of kinetic energy is 11.7 m/s.

Learn more about Speed here:

https://brainly.com/question/17661499

#SPJ11

A student graphed the position of a cart during a 7-second time interval.

Answers

The correct option is D; The cart moved at a constant velocity of 0.5m/s for the entire 7 seconds.

Which graph best represents a constant acceleration?

Constant acceleration is represented as a horizontal line on the acceleration graph. The slope of the velocity graph represents the acceleration. On the velocity graph, constant acceleration Equals constant slope = straight line.

Acceleration is represented in a velocity-time graph by the slope, or steepness, of the graph line. If the line slopes upward, as seen in the figure between 0 and 4 seconds, velocity increases, and acceleration is positive. The velocity-time graph will be a curve when the acceleration increases with time, as anticipated by the equation: v = u + at.

Learn more about velocity

https://brainly.com/question/24909693

#SPJ1

a transverse wave with a frequency of 880 hz ,3 m wavelength, and 5 mm amplitude is propagating on a 6 m, taught wire. if the mass of the wire is 42 g, how much time in seconds does it take for a crest of this wave to travel the length of the wire? please give your answer with two decimal places.

Answers

The time it takes for a crest of the wave to travel the length of the wire is 0.07 seconds.

To calculate the time it takes for a crest of the wave to travel the length of the wire, we can use the formula:

velocity = frequency x wavelength

First, we need to calculate the velocity of the wave. We know the frequency is 880 Hz and the wavelength is 3 m, so:

velocity = 880 Hz x 3 m

velocity = 2640 m/s

Next, we can use the velocity to calculate the time it takes for a crest of the wave to travel the length of the wire. We know the length of the wire is 6 m, so:

time = distance / velocity

time = 6 m / 2640 m/s

time = 0.00227 s

However, this is the time it takes for the wave to travel one round trip along the wire (i.e. from one end of the wire to the other and back). Since we only want to know the time it takes for a crest of the wave to travel from one end of the wire to the other, we need to divide this result by two:

time = 0.00227 s / 2

time = 0.00114 s

Finally, we can round this answer to two decimal places:

time = 0.07 s

For more similar questions on "wavelength"

brainly.com/question/24452579

#SPJ11.

Parts of the mixer become hot because some of the electrical energy is changed into

Answers

Parts of the mixer become hot because some of the electrical energy is converted into heat energy.

When electrical energy flows through a wire, it encounters resistance, which causes the wire to heat up. In a mixer, the electric motor converts electrical energy into mechanical energy to rotate the blades, but some of the electrical energy is lost as heat due to resistance in the motor's winding and other electrical components. This heat energy can accumulate in the mixer's parts and cause them to become hot. In many electrical devices, heat is an undesirable byproduct of energy conversion and can lead to reduced efficiency, damage, or safety hazards.

To know more about electrical energy, here

brainly.com/question/16182853

#SPJ4

--The complete Question is,  Fill in the blanks. " Parts of the mixer become hot because some of the electrical energy is changed into____"--

Learning Task 4: Story Reading "SITIO KATAMAKAWAN"
"Sitio Katamakawan is a community of lazy and gluttonous people. They
sit or lie all day and eat everything on their mouth desires. Each family
has a housemaid to take care of all the household chores. The children
of this community are adaicted to playing computer games although
they maintain their passing grades. They are not allowed to play outside
to prevent accidents. Most of the time, the teenager surf the internet.
Most of the parents are overweight because after their work, they watch
television while having night snacks. Some men areinto smoking and
drinking alcohol. "
Answer the following questions:
1. Would you like to live in this community? Why?
2. Which health dimensions are sustained, and do the people
live a physically active and healthy lifestyle
3. What are the possible diseases the people of this community
mighthave?
4. What are the risk factors of these diseases?​

Answers

Given passage is a story reading about a community called "Sitio Katamakawan" and their unhealthy living and lifestyle.

Based on the passages it not desirable to live in the community. They are lazy and gluttonous. Also so many people are having various unhealthy habits also. Smoking and drinking are two among them.It is very important to maintain a healthy and physically active lifestyle. Ten only the wellbeing of an individual and the society sustain. Here in this community, members do not live a physically active lifestyle, and their health may be compromised in various dimensions. There are many possible diseases the people of this community might have. Heart diseases, stroke, diabetes, cancers etc. are some of them. They may be at the risk of depression and anxiety.There are many risk factors for these diseases above mentioned. Unhealthy lifestyle, unhealthy diet, excess alcohol consumption and smoking, excessive screen time etc. are some of them.

Learn more about lifestyle:

https://brainly.com/question/30338403?referrer=searchResults

#SPJ4

Please help me

Question 1 . For a sound wave, the pitch is determined by which wave characteristic?

A-frequency
B-amplitude
C-wavelength
D-period

Question 2 - Which of the following waves cannot be transmitted through a vacuum

1-Ultraviolet radiation
2-Microwaves
3-Sound waves
4-Gamma rays

Question 3- Which of the following could be the value of a wavelength that is found in the visible region of the electromagnetic spectrum

A 5 × 10^-9 m
B. 5 × 10^-7 m
C. 5 × 10^-2 m
D. 5 × 10^-5 m


Question 4- Sophie is trying to measure the speed of sound. She stands 24.0 m away from a wall and claps repeatedly, changing the frequency until the echo synchronised with her claps. If she calculates the speed of sound as 325 m • s-1 how long did she wait between claps?

Give your answer in seconds, without units and correct to three significant figures.

Question 5 - Electromagnetic radiation is emitted with a frequency of 1.5 × 1012 Hz. What type of radiation is it?

Question 6- A buoy, floating at sea, is at rest when a wave reaches it. The buoy rises to its maximum height n times in 4 seconds. The wavelength of the buoy is measured to be 1. Which of the following is an expression for its wave speed?

Question 7-is the picture .

Answers

For a sound wave, the pitch is determined by frequency (option A)

The wave that cannot be transmitted through a vacuum is Sound waves .

5 × 10^-7m (option B) could be the value of a wavelength that is found in the visible region of the electromagnetic spectrum.

How to find how long Sophie waited between claps?

To calculate the time between claps, we can use the formula:

time = 2 x distance / speed of sound

Substituting the given values, we get:

time = 2 x 24.0 m / 325 m/s = 0.148 s

Therefore, Sophie waited for 0.148 seconds between claps.

What type of radiation is electromagnetic radiation with a frequency of 1.5 × 10^12 Hz?

The frequency of 1.5 × 10^12 Hz corresponds to the microwave region of the electromagnetic spectrum. Therefore, the type of radiation emitted is microwave radiation.

What is the expression for its wave speed?

The wave speed of the buoy can be calculated using the formula:

wave speed = wavelength / period

Since the buoy rises to its maximum height n times in 4 seconds, its period is 4/n seconds. Therefore, the expression for its wave speed is:

wave speed = 1/(4/n) = n/4 m/s

Learn about frequency here https://brainly.com/question/254161

#SPJ1

suppose an object moves under the influence of a force sketch arrows showing the relative direction of the force and displacement when the work done by the force ispositvengeativezero

Answers

When a force does positive work, negative work, and zero work displacement is the same direction, opposite direction, and no displacement respectively. The required force sketches are attached below.

When a force (1) does positive work, the force and displacement arrows point in the same direction. This signifies that the force is operating in the same direction as the object's displacement.

When a force (2) does negative work, the force and displacement arrows point in opposite directions. This signifies that the force is operating in the opposite direction of the object's displacement.

When a force (3) does not work, the force and displacement arrows are perpendicular or the force is zero. This indicates that either the force is operating perpendicular to the displacement, producing no work, or the force is zero, doing no work.

Learn more about the forces here:

https://brainly.com/question/18109210

#SPJ12

what will happen to the excess electrons when the negatively charged rod touches the metal sphere?

Answers

If the metal sphere is positively charged, then the excess electrons will move to the metal sphere. But if it's negatively charged, the excess electrons will repel the metal sphere.

Why reference electrode is used in potentiometry?

Answers

The reference electrode is used in potentiometry to provide a stable potential for the measurement.

It is usually a silver-silver chloride (Ag/AgCl) electrode, placed in a solution of the same composition as the sample, and connected to a reference potential, typically ground. This allows for a reliable measurement of the electrochemical potential of the sample and is essential for obtaining accurate results. The reference electrode is used in potentiometry to provide a constant potential that acts as a benchmark for measuring the potential of the analyte.

Potentiometry is a method of electroanalytical chemistry used to assess the potential difference between two electrodes in an electrolytic solution. In this method, an electrochemical cell is used to determine the concentration of a particular ion in a solution.

An electrode that has a well-known and stable potential, which is used to make an electrochemical measurement against an unknown electrode, is known as a reference electrode. The potential difference between the two electrodes is the measurement result, which may be translated into the concentration of the ion being assessed.

The reference electrode provides a stable and reproducible potential against which the voltage of the indicator electrode is assessed in potentiometry. It serves as a benchmark for potential measurement, enabling the voltage reading of the analyte to be equated to the standard potential of the reference electrode.

Consequently, without the use of a reference electrode, the electrochemical measurements could not be performed.

To know more about Reference Electrode, refer here:

https://brainly.com/question/14375955#
#SPJ11

in simple meters, the beat is divided into two, and in compound meters the beat is divided into how many?

Answers

In simple meters, the beat is divided into two parts, while in compound meters, the beat is divided into three parts.

A meter, or time signature, in music notation is a fraction-like symbol placed at the beginning of a piece of music that indicates the number and duration of beats in each measure. In simple meters, such as 2/4 or 3/4, the beat is subdivided into two parts, which are typically equal in duration. In compound meters, such as 6/8 or 9/8, the beat is subdivided into three parts, each of which is typically shorter than the beat duration and adds up to the beat duration. Compound meters are often used in music genres such as jazz, Latin, and folk music.

To know more about compound meter, here

brainly.com/question/7326834

#SPJ4

Final answer:

In music theory, a beat is divided into two equal parts in simple meters, while in compound meters, the beat is generally divided into three equal parts. One example of a compound meter is 6/8, where the 6 beats would be split into two groups of 3 beats.

Explanation:

In music theory, specifically relating to rhythm and meter, a beat can be divided into different ways depending on whether the music is in simple meter or compound meter. In simple meters, the beat is divided into two equal parts. However, in compound meters, the beat is typically divided into three equal parts.

For example, if you have a compound meter such as 6/8, there are 6 beats in a measure, and these 6 beats would split into two groups of 3 beats, giving it a 'triplet feel'. This contrasts with a simple meter like 2/4, where the beats would divided into two halves.

Learn more about Compound Meters here:

https://brainly.com/question/32112553


a particle moving along the x axis in simple harmonic motion starts from its equilibrium position, the ori- gin, at t 5 0 and moves to the right. the amplitude of its motion is 2.00 cm, and the frequency is 1.50 hz. (a) find an expression for the position of the particle as a function of time. determine (b) the maximum speed of the particle and (c) the earliest time (t . 0) at which the particle has this speed. find (d) the maxi- mum positive acceleration of the particle and (e) the earliest time (t . 0) at which the particle has this accel- eration. (f) find the total distance traveled by the par- ticle between t 5 0 and t 5 1.00 s.

Answers

(a) The position of the particle as a function of time is given by:

x(t) = A cos(2πft)

where A is the amplitude (2.00 cm), f is the frequency (1.50 Hz), and cos is the cosine function.

Substituting the given values, we get:

x(t) = 2.00 cos(3πt)

(b) The maximum speed of the particle occurs at the equilibrium position, where the displacement is zero. At this point, the velocity is maximum and is given by:

vmax = Aω

where ω is the angular frequency and is equal to 2πf. Substituting the given values, we get:

vmax = 2.00 × 2π × 1.50 = 18.85 cm/s

(c) The earliest time at which the particle has this speed is when it passes through the equilibrium position. This happens at t = 0, so the earliest time is t = 0.

(d) The maximum positive acceleration of the particle occurs at the ends of its motion, where the displacement is maximum. At these points, the acceleration is given by:

amax = Aω^2

Substituting the given values, we get:

amax = 2.00 × (2π × 1.50)^2 = 282.74 cm/s^2

(e) The earliest time at which the particle has this acceleration is when it reaches the maximum displacement. This happens at t = 1/4T, where T is the period of the motion. The period is given by:

T = 1/f = 2/3 s

So, t = 1/4T = 1/4 × 2/3 = 0.33 s

(f) The total distance traveled by the particle between t = 0 and t = 1.00 s is equal to one complete cycle of its motion. The distance traveled in one complete cycle is equal to four times the amplitude, or:

4A = 8.00 cm

Therefore, the total distance traveled is:

8.00

when an arrow is fired from a bow, the arrow keeps moving after it leaves the bow because

Answers

An arrow fired from a bow keeps moving because of momentum conservation.

Conservation of momentum

When an arrow is fired from a bow, it keeps moving after it leaves the bow because of the conservation of momentum.

When the bowstring is pulled back, the potential energy in the bow is stored as elastic potential energy in the bowstring. When the bowstring is released, the elastic potential energy is transferred to the arrow, which causes the arrow to accelerate forward.

According to Newton's third law of motion, for every action, there is an equal and opposite reaction. When the bowstring exerts a force on the arrow, the arrow exerts an equal and opposite force on the bowstring, causing the bow to recoil backward. This recoil also contributes to the momentum of the arrow.

More on momentum conservation can be found here: https://brainly.com/question/2141713

#SPJ1

a 30 nc charge experiences a 0.038 n electric force. part a what is the magnitude of electric field at the position of this charge? express your answer with the appropriate units.

Answers

The electric field magnitude at the position of a 30 nC charge that experiences a 0.038 N electric force is 1,266,666.67 N/C.

What is the magnitude of the electric field?

The magnitude of the electric field can be calculated using the formula below:

|E|=|F|/q

Where |E| represents the magnitude of the electric field; |F| represents the magnitude of the electric force on the charged particle; and q is the charge on the particle

Substituting the given values into the equation yields:

|E|=|F|/q

=0.038 N/30 nC

=1,266,666.67 N/C

Thus, the magnitude of the electric field at the position of this charge is 1,266,666.67 N/C.

For more information about electric field refers to the link: https://brainly.com/question/8971780

#SPJ11

While you stand on the floor you are pulled downward by gravity and supported upward by the floor. Gravity pulling down and the support force pushing up
answer choicesa. make an action-reaction pair of forces.
b. do not make an action-reaction pair of forces.
c. need more information

Answers

While you stand on the floor you are pulled downward by gravity and supported upward by the floor. Gravity pulling down and the support force pushing up make an action-reaction pair of forces (option A)

What is an action-reaction pair of forces?

Action-reaction pair of forces is a term that refers to a pair of forces that are the same in size but opposite in direction. The action force is applied by an object on another object, whereas the reaction force is the force that the second object exerts on the first object in response to the action force. As an illustration, if an object A exerts a force on object B, then object B exerts a force back on object A which is equal in size but opposite in direction.

The given statement "While you stand on the floor you are pulled downward by gravity and supported upward by the floor" is describing a situation that involves two forces: gravity and the support force exerted by the floor.

Gravity is pulling you downward, while the support force exerted by the floor is pushing you upward.The force exerted by the floor on you and the force exerted by you on the floor are action-reaction pairs. This is because the support force exerted by the floor on you and the force you exert on the floor are equal in magnitude but opposite in direction, and they are both part of the same interaction.

Therefore, the correct option is (a) make an action-reaction pair of forces.

Learn more about action reaction here: https://brainly.com/question/29447428

#SPJ11

Complete the following statement: The sum of the magnitudes of the currents directed into a junction Select one: a. is divided equally among the number of lines directed out of the junction. b.equals the current that is directed along one of the lines out of the junction. c. is greater than the total current directed out of the junction. d. equals the sum of the magnitudes of the currents directed out of the junction.

Answers

By kirchoff rule ,The sum of the magnitudes of the currents directed into a junction equals the sum of the magnitudes of the currents directed out of the junction. Therefore, the correct option is d, which says that the sum of the magnitudes of the currents directed into a junction equals the sum of the magnitudes of the currents directed out of the junction.

How does a junction work?A junction is a point where two or more lines meet. The current flowing into the junction must be the same as the current flowing out of it. The current will divide into various branches at the junction. The sum of the current entering the junction equals the sum of the current exiting the junction. Therefore, the current through one branch must be subtracted from the current through the other branch when calculating the current through each branch.The law of conservation of charge says that charge is neither created nor destroyed. Thus, the sum of the charges that flow into a junction must equal the sum of the charges that flow out of it, according to Kirchhoff's junction rule.The Kirchhoff's junction rule states that the sum of the currents into a junction must equal the sum of the currents leaving the junction. When two or more resistors are connected in a circuit, they share the current flowing through the circuit in the same direction, and the current is split into two or more branches.

for more such questions on Kirchoff' rule

https://brainly.com/question/14681219

#SPJ11

which statement below concerning the pressure gradient force (pgf) is true? group of answer choices A. the pgf is the only force that can cause the air to accelerate horizontally from rest B. the pgf has a magnitude of zero at the equator and is a maximum at the poles C. the pgf is strong where the isobars are far apart and weak where the isobars are close together D. the pgf acts from high to low pressure in the northern hemisphere and from low to high pressure in the southern hemisphere when the vertical pgf balances gravity the air is in geostrophic balance

Answers

D. The statement that is true concerning the pressure gradient force (PGF) is: the PGF acts from high to low pressure in the northern hemisphere and from low to high pressure in the southern hemisphere when the vertical PGF balances gravity the air is in geostrophic balance.

The pressure gradient force (PGF) is a force that results from the horizontal differences in atmospheric pressure. The PGF is responsible for moving air in a horizontal direction. A is not true, as other forces, such as Coriolis force, can cause the air to accelerate horizontally. B is also not true, as the PGF has a magnitude that can change depending on the pressure gradient. C is true, as the PGF is stronger where the isobars are far apart, as this indicates a steeper pressure gradient and thus a stronger force. D is true, as the PGF acts from high to low pressure in the Northern Hemisphere and from low to high pressure in the Southern Hemisphere. When the vertical PGF balances gravity, the air is in geostrophic balance, meaning that the air is in equilibrium and is not accelerating either up or down.

The PGF is an important force that affects global atmospheric circulation. It is the force responsible for the movement of air from high pressure to low pressure, causing winds to flow from regions of high pressure to regions of low pressure. As the pressure gradient varies from place to place, the strength and direction of the PGF varies accordingly. The PGF is also an important component of cyclones and anticyclones.


In summary, the pressure gradient force (PGF) is a force that results from horizontal differences in atmospheric pressure. The PGF is stronger where the isobars are far apart, and acts from high to low pressure in the Northern Hemisphere and from low to high pressure in the Southern Hemisphere. When the vertical PGF balances gravity, the air is in geostrophic balance. The PGF is an important component of global atmospheric circulation and is responsible for the movement of air from high pressure to low pressure.

For such more questions on pressure gradient force

https://brainly.com/question/30174632

#SPJ11

a 1-kg chunk of putty moving at 12 m/s collides with and sticks to a 5-kg bowling ball initially at rest. the bowling ball and putty then move with a velocity of

Answers

The bowling ball initially at rest. The bowling ball and putty then move with a velocity of 2 m/s.

The combined mass of the putty and the bowling ball is 6 kg. Using the principle of conservation of momentum, we can calculate the velocity of the bowling ball and putty after the collision.

Given:

Mass of putty=1kg

Velocity of putty=12 m/s

Mass of bowling ball=5kg

Velocity of bowling ball= 0 m/s

As the putty collides with the ball and sticks to it, we can say that they move together after the collision.

Let v be the velocity of putty and bowling ball after collision.

Momentum (p) = mass (m) * velocity (v)
Therefore, momentum before collision = (mass of putty x velocity of putty) + (mass of ball x velocity of ball) = 1 x 12 + 0 x 5 = 12 kg m/s

Momentum after collision = (mass of putty + mass of ball) x velocity after collision= 6 x v kg m/s

So, according to the law of conservation of momentum,12 = 6 x v = 2 m/s

Therefore, the bowling ball and putty move with a velocity of 2 m/s after the collision.

Therefore, the velocity of the bowling ball and putty after the collision is 2 m/s when 1-kg chunk of putty moving at 12 m/s collides with and sticks to a 5-kg bowling ball initially at rest.

To know more about Velocity please visit ;

https://brainly.com/question/80295

#SPJ11

Quantum numbers are interrelated values that indicate a specific orbital - the principal quantum number, n; the angular momentum quantum number, l; and the magnetic quantum number, ml.
Which one of the following is an allowed set of quantum numbers?
a) n = 3, l = 1, ml = -2
b) n = 2, l = 0, ml = 1
c) n = 2, l = 2, ml = - 1
d) n = 3, l = 2, ml = - 1

Answers

Due to the fact that they go against one or more of the aforementioned restrictions, options a), b), and c) are not permitted groups of quantum numbers.

An allowed set of quantum numbers must follow certain rules that govern the behavior of electrons in atoms. The principal quantum number (n) indicates the energy level of the electron, the angular momentum quantum number (l) indicates the shape of the orbital, and the magnetic quantum number (ml) indicates the orientation of the orbital in space. The values of n, l, and ml must all be integers, and they must also satisfy certain constraints.

Of the options given, only option d) n = 3, l = 2, ml = -1 is an allowed set of quantum numbers. This is because n = 3 indicates the electron is in the third energy level, l = 2 indicates that it is in a d orbital (since l = 0 corresponds to an s orbital, l = 1 corresponds to a p orbital, and so on), and ml = -1 indicates that the orbital is oriented in a specific direction in space.

Options a), b), and c) are not allowed sets of quantum numbers because they violate one or more of the constraints mentioned above.

To learn more about angular momentum refer to:

brainly.com/question/29716949

#SPJ4

Other Questions
Please help meQuestion 1 . For a sound wave, the pitch is determined by which wave characteristic?A-frequency B-amplitude C-wavelength D-period Question 2 - Which of the following waves cannot be transmitted through a vacuum 1-Ultraviolet radiation2-Microwaves3-Sound waves4-Gamma raysQuestion 3- Which of the following could be the value of a wavelength that is found in the visible region of the electromagnetic spectrumA 5 10^-9 mB. 5 10^-7 mC. 5 10^-2 mD. 5 10^-5 mQuestion 4- Sophie is trying to measure the speed of sound. She stands 24.0 m away from a wall and claps repeatedly, changing the frequency until the echo synchronised with her claps. If she calculates the speed of sound as 325 m s-1 how long did she wait between claps? Give your answer in seconds, without units and correct to three significant figures.Question 5 - Electromagnetic radiation is emitted with a frequency of 1.5 1012 Hz. What type of radiation is it?Question 6- A buoy, floating at sea, is at rest when a wave reaches it. The buoy rises to its maximum height n times in 4 seconds. The wavelength of the buoy is measured to be 1. Which of the following is an expression for its wave speed?Question 7-is the picture Prompt:Assume the role of an audience member listening to Abraham Lincoln'sGettysburg Address. In a letter to a fellow citizen who was not present inGettysburg, summarize the speech and describe your reactions. Include whetheryou think the speech was appropriate/effective for the occasion.Product: Write a letter to a fellow citizen that follows the guidelines below. when a 2.75-kg fan, having blades 18.5 cm long, is turned off, its angular speed decreases uniformly from 10.0 rad/s to 6.30 rad/s in 5.00 s. (a) what is the magnitude of the angular acceleration of the fan? The points (-7,4) and (r,19) lie on a line with slope 3. Find the missing coordinate r. Which of the terms below best describes a regulatory mechanism in which the end product of a metabolic pathway inhibits an enzyme that catalyzes an early step in the pathway? cooperative inhibition allosteric inhibition metabolic inhibition feedback inhibition Which process/ processes involve base-pairing as a part of its/their mechanism? translation of mRNA to form polypeptide OOOO none is correct DNA replication all are correct transcription of DNA to form RNA The fitt principles can be applied to any workout program.truefalse Which of the following species is amphoteric? Answer HPO42- CO32- HF NH4 None of the above are amphoteric 4. Coriolis Effect is responsible for the.5. Storms in united states move from6. Ocean currents are created by7. Amount of salt is8. In the poles the water issurrounding water9. Near the equator10.Salty water is.11.Warm water is910salty.Smakes the water.dense than warm waterdense than cold watertonear the poles and the equator.salty because some water freezes leaving behind thewinds.16. The ocean currents travels north and becomesback down.17. The global conveyor belts take.salty12.Ocean currents move around the globe by.13.Its a circulation system that distributes14.These Ocean currents carry.around the planetenergy to different parts of the earth.15.These global conveyor belts carry thermal energy from the to Europe causingin that region.&yrs to make a full loop.beltclimatemaking current sink3-45-6.7.8.9.10.11.12.13-1415-1617- Kevin purchasing concert tickets with his debit card is an example of the _____ function of money.A) medium of exchangeB) unit of accountC) store of valueD) specialization The table represents a quadratic function.x y5 234 133 72 51 70 131 23What is the equation of the function? y = 2(x + 2)2 5 y = 2(x 2)2 + 5 y = (x + 2)2 5 y = (x 2)2 + 5 Which of these is (are) most likely to increase productivity? A) higher corporate tax rates. B) increase in pop. C) investments in research and development. Write each of these ratios in its simplest form:a) 7:21:35 b) 9 min: 600 s The area of a parallelogram is 513cm^2and the height is 19cm.calculate the base? Which of the followings is not the feature of postmodern literature? T/F. After creating the first model view, SOLIDWORKS places you into Projected View mode where you can add projected views of the model view. the ability to grapple with the big questions of human existence, such as the meaning of life and death, with special sensitivity to issues of spirituality Please forgive me ____ not informing you about problems we were having with the new software which of the following is not a cloud computing service? a. software as a service b. network as a service c. infrastructure as a service d. platform as a service Pls help and show solution. Bokomo produced 300 Granola megapacks for the Mogoditshane market. Bokomos marginal cost equation is as follows: MC=2x-100. Find the cost of producing an additional 200 items due to increased demand.