a rectangular coil 25 cm by 30 cm has 150 turns. this coil produces a maximum emf of 74 v when it rotates with an angular speed of 200 rad/s in a magnetic field of strength b . Find in the value b

Answers

Answer 1

The value of B is approximately equal to 0.001964 Tesla.

Let us assume that the flux density or magnetic field strength (B) is uniform and perpendicular to the rectangular coil.

The voltage or electromotive force (emf) generated in a coil is given by the equation ε = NBAω, where:

N = number of turns of the coilB = magnetic field strengthA = area of the coilΩ = angular speed (in radians per second).

We can use this formula to solve the problem:ε = NBAω74 = 150 x B x (0.25 x 0.30) x 200B = 74/(150 x 0.25 x 0.30 x 200)B = 0.001964 Tesla. Therefore, the value of B is approximately equal to 0.001964 Tesla.

Learn more about strength of a magnetic field: brainly.com/question/26257705

#SPJ11


Related Questions

shows the reverse current obtained for a si p-n junction diode at 300 k. the slight increase in reverse current at small reverse bias voltages ranging from -5 v to -25 v is due to

Answers

The slight increase in reverse current at small reverse bias voltages ranging from -5 V to -25 V is due to tunneling.

What is a Si p-n junction diode?

A diode is a type of electrical component that allows electric current to flow in only one direction, and a p-n junction diode is a type of diode that is made up of p-type and n-type semiconductor materials. The current-voltage characteristic of a Si p-n junction diode at 300 K is given in the figure above. The slight increase in reverse current at small reverse bias voltages ranging from -5 V to -25 V is due to tunneling.

Tunneling is a quantum mechanical phenomenon in which particles penetrate through a potential barrier that would be impossible to overcome under the principles of classical mechanics. This phenomenon explains why the current flowing through a p-n junction increases at small reverse bias voltages.

The current in a Si p-n junction diode is extremely tiny when reverse-biased, but it begins to rise at a certain point, and this phenomenon is referred to as tunneling. The magnitude of this reverse-bias current is quite small, but it is not negligible, and it is referred to as the reverse saturation current.

Learn more about Si p-n junction here:

https://brainly.com/question/29513692

#SPJ11

A parallel-plate capacitor of capacitance Chas plate area A and distance between plates d. The capacitor is connected to a battery with voltage V, fully charged and then disconnected. A slab of dielectric material with dielectric constant 4.0 is then inserted into capacitor, completely filling region between plates. A) After inserting the dielectric, the capacitance is now: B) After inserting the dielectric, the charge stored in the capacitor is now: C) After inserting the dielectric, the voltage across the capacitor is now: D) After inserting the dielectric, electric field is now

Answers

A) The capacitance of the parallel plate capacitor after inserting the dielectric material between the plates is 4 times of the original capacitance of the capacitor.

B) The charge stored in the capacitor after inserting the dielectric material is given by [tex]Q_2[/tex] = CV.

C) The voltage across the capacitor after inserting the dielectric material is [tex]V_2 = V_1 = V_B[/tex] = V.

D) The electric field after inserting the dielectric material is one-quarter of the electric field before inserting the dielectric material, [tex]E_2 = (1/4)E_1[/tex].

A) The capacitance of the parallel plate capacitor after inserting the dielectric material between the plates is given by:

C’ = kC

Where,

C = capacitance of the capacitor k = dielectric constant of the medium between the plates

Given, C’ = ? and k = 4.0, C = C

Using the formula above,

C’ = 4.0 × C = 4C

B) The charge stored in the capacitor can be determined by the formula below;

Q = CV

Before the dielectric was inserted,

[tex]Q_1 = CV_1[/tex]

Where, [tex]Q_1[/tex] = initial charge stored in the capacitor

[tex]V_1[/tex] = voltage across the capacitor before inserting the dielectric material

After the dielectric is inserted,

[tex]Q_2 = CV_2[/tex]

Where, [tex]Q_2[/tex] = final charge stored in the capacitor

[tex]V_2[/tex] = voltage across the capacitor after inserting the dielectric material

Using the above formula, we can write;

[tex]Q_2[/tex] = [tex]Q_1[/tex] = C[tex]V_1[/tex]= C([tex]V_1[/tex])C = C’/4 = (4C)/4 = C' [tex]V_2[/tex] = [tex]V_1[/tex] = V

Befor inserting the dielectric material, the capacitor was fully charged and then disconnected.

As the battery is removed, the voltage across the capacitor remains constant.

Therefore, the charge stored in the capacitor after inserting the dielectric material is the same as the initial charge which is given by

[tex]Q_2[/tex] = [tex]Q_1[/tex] = C[tex]V_1[/tex] = C[tex]V_B[/tex] = CV

C) The voltage across the capacitor before inserting the dielectric material is given by

[tex]V_1[/tex] = [tex]V_B[/tex] = V

Where V is the voltage of the battery connected to the capacitor.

As the voltage across the capacitor is the same before and after inserting the dielectric material, we have

[tex]V_2 = V_1 = V_B[/tex] = V

D) The electric field E can be determined using the formula below;

E = V/d

Before inserting the dielectric material,

[tex]E_1[/tex] = [tex]V_1[/tex] / d

Where, [tex]E_1[/tex] = electric field before inserting the dielectric material

[tex]V_1[/tex] = voltage across the capacitor before inserting the dielectric material

After inserting the dielectric material,

[tex]E_2[/tex] = [tex]V_2[/tex] / d

Where, [tex]E_2[/tex] = electric field after inserting the dielectric material

[tex]V_2[/tex] = voltage across the capacitor after inserting the dielectric material

Using the formula above, we can write;

[tex]E_2 = E_1/k[/tex]

Where, k = dielectric constant of the medium between the plates = 4.0

[tex]E_1 = \frac{V}{d} E_2[/tex] = [tex]\frac{V}{d} k[/tex][tex]= \frac{V}{4d} E_2[/tex] = [tex]\frac{1}{4}E_1[/tex]

For similar question capacitance

https://brainly.com/question/16998502

#SPJ11

Three objects interact in a system that has a total initial momentum of 236 kg-m/s directed in the southeast direction. If there is no friction (external force) acting on the two objects, what is their momentum after 12 s?

Answers

The momentum of the objects after 12 seconds of the interaction is -236 kg-m/s

Step by step Explanation:

The three objects of a system that has a total initial momentum of 236 kg-m/s directed in the southeast direction.

If there is no friction (external force) acting on the two objects, the momentum of the object is the product of the mass and velocity of the object.

The formula for momentum is P = mv,

where P is momentum, m is mass, and v is velocity.

Furthermore, the direction of momentum is similar to the direction of velocity. The given initial momentum is [tex]P_1[/tex] = 236 kg-m/s directed in the southeast direction.

According to the law of conservation of momentum, the total momentum of the system must remain constant if there is no external force. As a result, the total momentum of the system will be the same before and after the interaction.

[tex]P_1 = P_2 + P_3[/tex]

Where, [tex]P_1[/tex] = Initial momentum of the system

[tex]P_2[/tex] = Momentum of the object after the interaction

[tex]P_3[/tex] = Momentum of the object after the interaction

Let [tex]P_2[/tex]be the momentum of object 2 and [tex]P_3[/tex] be the momentum of object 3.

P_2 = m_2v_2

[tex]P_2 = m_2v_2[/tex]

[tex]P_3 = m_3v_3[/tex]

After the interaction, the momentum of the system is:

[tex]P = P_2 + P_3[/tex]

Let's find P_2 and P_3 in terms of time since the direction and mass of the objects are not given.

[tex]P_1 = P_2 + P_3[/tex]

⇒ [tex]P_2 = P_1 - P_3[/tex]

We must discover the momentum of object 3. The initial momentum is southeast. It indicates that the momentum is in the opposite direction of northwest. If we call the north and west direction negative, then the southeast direction will be positive. This indicates that the momentum is negative.

Therefore, [tex]P_1 = P_2 + P_3[/tex] ⇒ -236 =[tex]-P_3 + P_2[/tex]

We are supposed to calculate their momentum after 12 seconds after the interaction. So, the external force will act on them during this interval of time. Due to the absence of external forces, the momentum of the objects will remain constant.

Hence, the momentum of the objects after 12 seconds of the interaction will remain the same as the momentum of the objects after the interaction.Therefore,

[tex]P = P_2 + P_3 = P_1P[/tex] = -236 kg-m/s  

the momentum of the objects after 12 seconds of the interaction.

Learn more about momentum at : 'Formula for momentum' https://brainly.com/question/402617

#SPJ11

a belt drive must transmit 10kw of power of 3984 rev/min. the wheel is 235 mm diameter and the coefficient of friction is 0.35. the lap angle is 150 degrees. the belt tension must not exceed 50 n. calculate the minimum number of belts required

Answers

The minimum number of belts required for a belt drive must transmit 10kw of power of 3984 rev/min is 9.

We can apply the formula: Power transmitted by the belt, P = (T₁ - T₂) × V where,

T₁ = Tight side tension
T₂ = Slack side tension
V = Velocity of the belt

Velocity of the belt, V = πdn/60 where,

d = Diameter of the wheel
n = Speed of the wheel in rev/min

Tight side tension, T₁ = T₂eμθ where,
e = Base of natural logarithm

According to the problem,
P = 10 kW = 10000 W
d = 235 mm = 0.235 m
n = 3984 rev/min
μ = 0.35
θ = 150° = 150° × π/180 = 2.618 rad
T = 50 N
n = ?

Now, substituting the given values in the formula, we get
V = πdn/60
= π × 0.235 × 3984/60
= 48.853 m/s

T₁ = T₂eμθ
= 50e0.35 × 2.618
= 256.219 N

P = (T₁ - T₂) × V
10000 = (256.219 - T₂) × 48.853
T₂ = 204.291 N

Total tension in the belt,
T₁ + T₂ = 460.51 N

Let the number of belts required be 'x'. Then,
Total tension in all the belts = T × x
Therefore, T × x = T₁ + T₂
T × x = 460.51
x = 460.51/50
x = 9.21

Since the number of belts cannot be in decimal form, we can round off the answer to the nearest whole number. Therefore, the minimum number of belts required is 9. Answer: 9.

More on belt drives and power: https://brainly.com/question/23526864

#SPJ11

the transportation of weathering products by wind, water flow, or ice flow is called

Answers

The transportation of weathering products by wind, water flow, or ice flow is called erosion.

A geological process called erosion involves the removal and movement of rock and soil by forces of nature including wind, water, and ice. Gravity, climatic patterns, and the characteristics of the materials are only a few of the variables that influence the process. Depending on the scope and severity of the process, erosion may have both good and negative consequences on the ecosystem. While erosion can result in beautiful natural features like canyons and waterfalls, it can also degrade the soil, pollute the water, and result in land loss. For the management of natural resources and the reduction of erosion's detrimental effects on the environment, understanding erosion is crucial.

Learn more about wind here:

https://brainly.com/question/12005342

#SPJ4

The transportation of weathering products by wind, water flow, or ice flow is called______.

When using compass orientation, migrating animals make use of _____.a. memories from previous trips with parentsb. familiar landmarks and olfactory cuesc. the north and south polesd. the sun, stars, and Earth's magnetic field

Answers

When using compass orientation, migrating animals make use of the sun, stars, and Earth's magnetic field to navigate. So, option d is correct option.

Compass orientation in migrating animals is the process of using the sun, stars, and Earth's magnetic field to navigate. Migrating animals use a variety of techniques to navigate, depending on their species and environment.

Some animals use the position of the sun, stars, and Earth's magnetic field as their primary means of orientation when migrating. This is known as compass orientation.

Compass orientation is a technique that relies on environmental cues, such as the position of the sun and stars, to determine direction. Some animals can use the Earth's magnetic field to navigate as well. This is known as magnetic orientation.

Magnetic orientation is used by some species of birds and fish, as well as certain insects and reptiles. Other animals use landmarks and olfactory cues to navigate.

These animals rely on visual or chemical markers in the environment to orient themselves. This technique is known as piloting. Piloting is used by animals such as rodents, bats, and some species of birds. Animals that use piloting must be able to remember and recognize the landmarks they use as cues to navigate.

Finally, some animals use memories from previous trips with parents to navigate. This technique is known as true navigation. True navigation requires animals to have a highly developed sense of spatial awareness and memory. True navigation is used by animals such as sea turtles and some species of birds.

All of these techniques require different cognitive abilities and sensory mechanisms, but they allow animals to navigate over long distances to reach their desired destinations.

for similar question on magnetic field to navigate.

https://brainly.com/question/22986969

#SPJ11

consider a 10 m length of 2 cm-i.d tube. what is the average convective heat transfer coefficient and pressure gradient inside the tube when the tube wall is at 330 k and water enters at 300 k, 1 atm pressure, and flows at a velocity of 3 m/s?

Answers

The average convective heat transfer coefficient and pressure gradient inside a 10 m long tube with a 2 cm inner diameter when the tube wall is at 330 K and water enters at 300 K and 1 atm pressure, flowing at a velocity of 3 m/s, is: 1420 W/m²K and 2.6 x 10⁴ Pa

This can be calculated using the equations of fluid mechanics. The average convective heat transfer coefficient, or h, is determined using the following equation:

[tex]h = (k/d) x (v/P).[/tex]

k is the thermal conductivity of the fluid (water), d is the tube inner diameter, v is the velocity of the fluid, and P is the pressure gradient across the tube wall.


The pressure gradient is found using the equation: [tex]P = (v²/2g) + P₀[/tex],

where v is the fluid velocity, g is the acceleration due to gravity, and P₀ is the pressure at the inlet of the tube (1 atm in this case). Plugging the given values into the equations yields a heat transfer coefficient of 1420 W/m²K and a pressure gradient of 2.6 x 10⁴ Pa.


In conclusion, the average convective heat transfer coefficient and pressure gradient inside a 10 m long tube with a 2 cm inner diameter when the tube wall is at 330 K and water enters at 300 K and 1 atm pressure, flowing at a velocity of 3 m/s, is 1420 W/m²K and 2.6 x 10⁴ Pa, respectively.

To know more about heat transfer refer here:

https://brainly.com/question/30416117#

#SPJ11

A solar sailplane is going from Earth to Mars. Its sail is oriented to give a solar radiation force of FRad = 7.70 × 102 N. The gravitational force due to the Sun is 173 N and the gravitational force due to Earth is 1.00 × 102 N. All forces are in the plane formed by Earth, Sun, and sailplane. The mass of the sailplane is 14,900 kg. What is the magnitude of the acceleration on the sailplane? Answer in m/s2

Answers

The sailplane which is going from Earth to Mars is accelerating at 0.033 m/s² in the direction of solar radiation force.

The force of gravity is a force that arises as a consequence of the mutual attraction of two objects. This gravitational force is usually exerted between two physical objects. Newton's law of universal gravitation states that every point mass in the universe attracts every other point mass with a force that is proportional to the product of their masses.

Acceleration is the rate at which an object changes its speed or direction. Acceleration is a vector quantity that can be positive or negative. If the acceleration is negative, the object slows down. If the acceleration is positive, the object speeds up.

The acceleration on the sailplane can be determined using the following formula:

[tex]F_{net} = ma[/tex]

Where Fnet is the net force acting on the sailplane, m is the mass of the sailplane a is the acceleration on the sailplane.[tex]F_{net} = ma[/tex]

The net force acting on the sailplane can be calculated as:

[tex]F_{net} = F_{rad} - F_{gravitySun} - F_{gravityEarth}[/tex]

Where [tex]F_{rad}[/tex] is the solar radiation force, [tex]F_{gravitySun}[/tex] is the gravitational force due to the sun, and [tex]F_{gravityEarth}[/tex] is the gravitational force due to Earth.

Putting the given values in the above formula:

[tex]F_{net} = 7.70 \times 10^2 N - 173 N - 1.00 \times 10^2 N = 497 N[/tex]

The acceleration on the sailplane is given as:

[tex]a = F_{net} / ma = (497\  N) / 14,900 \ kg = 0.033 \ m/s^2[/tex]

The magnitude of the acceleration on the sailplane is 0.033 m/s² (rounded to three significant figures).

Learn more about Newton's law:

https://brainly.com/question/28171613

#SPJ11

Using the heat of vaporization of benzene, 395 J/g, calculate the grams of benzene that will condense at its boiling point if 8.44 kJ is removed.

Answers

Considering the heat of vaporization of benzene, the mass that will evaporate, at the boiling point, if 8.44 kJ/g of heat is extracted is 21.36 g.

Given the heat of vaporization of benzene, 395 J/g and the heat removed, 8.44 kJ, we can determine the mass of benzene that condenses by converting the heat removed to J/g as follows:

Qv = 8.44 kJ/g · 1000 J / 1 kJ = 8440 J/g

Hence, mass of benzene that condenses can be found by dividing the heat removed by the heat of vaporization as shown:

mass = heat removed / heat of vaporization

m = 8440 J/g / 395 J/g

m = 21.36 g

Therefore, 21.39 g of benzene will condense at its boiling point if 8.44 kJ is removed.

See more about heat of vaporization at https://brainly.com/question/26306578.

#SPJ11

(Figure 1) shows a collision between three balls of clay. The three hit simultaneously and stick together. Assume that m = 60 g and v = 2.9 m/s. ⬤↘ m 40 m/s, and 45°
←⬤ v 30 g

⬤ 20 g and 2.0 m/s
Part A What is the speed of the resulting blob of clay? Express your answer with the appropriate units. V = ? Part B What is the movement direction of the resulting blob of clay? Express your answer in degrees below the horizontal. θ = ?

Answers

The speed of the resulting blob of clay is 20.99 m/s  and the direction is 45.82⁰ below the horizontal.

Given :

Masses of balls of clay:

m₁ = 60g,

m₂ =20g,

m₃ = 30g.

Speed of balls of clay :

v₁ = 40m/s,

v₂= 2m/s,

v₃ = 2.9m/s

we can write the speed in vector form as :

υ₁  = 40( x + y)/ √2 m/s,

υ₂ = 2 y m/s,

υ₃ = 2.9 (-y) m/s, where x and y are unit vectors in perpendicular directions.

During a collision, the momentum remains conserved. Hence using the conservation of total momentum we can calculate the final speed of the resulting bob clay.

Using conservation of momentum,

initial momentum = final momentum

m₁υ₁ +  m₂υ₂ + m₃υ₃ = (m₁+m₂+m₂)υ,

where υ = final velocity of clay blob.

Putting all the values in the above equation,

60 × 40( x + y)/ √2 + 20×2 y+30 ×2.9 (-y) = (60+20+30) υ

on solving the above equation, we get

υ = 14.63 x + 15.06 y

The magnitude of the final speed will be equal to √(14.63²+ 15.06²)

Final speed= 20.99 m/s.

and

Angle = tan⁻(15.06/14.63)

Angle = 45.82⁰ below the horizontal.

Therefore, the speed of the resulting blob of clay is 20.99 m/s  and the direction is 45.82⁰ below the horizontal.

To learn more about momentum, click here :

https://brainly.com/question/17166755

#SPJ12

in an experiment, two objects, object x x and object y y , travel toward each other and collide. data are collected about each object before, during, and after the collision to create a graph that shows the momenta of object x x and object y y as a function of time. how should a student use the data found on the graph to verify the conservation of momentum?

Answers

To verify the conservation of momentum in an experiment, a student can use the data found on the graph by analyzing the slopes of the momentum vs. time curves for each object. According to the law of conservation of momentum, the total momentum of a closed system should remain constant before and after a collision.

Before the collision, the total momentum of the system can be calculated by adding the momenta of object x and object y. The sum of the two momenta should remain constant throughout the collision and after the collision.

During the collision, the momenta of object x and object y will change as they interact with each other. The slopes of the momentum vs. time curves during this time period can be analyzed to determine the rate of change of momentum for each object.

After the collision, the total momentum of the system can be calculated again by adding the momenta of object x and object y. If the sum of the two momenta is the same as the total momentum before the collision, then the conservation of momentum has been verified.

In summary, a student can use the data found on the graph to verify the conservation of momentum by analyzing the slopes of the momentum vs. time curves for each object before, during, and after the collision, and by calculating the total momentum of the system before and after the collision.

For more similar questions on momentum and collisions:

brainly.com/question/27519035

#SPJ11

A typical neutron star has a mass of about 1.5Msun and a radius of 10 kilometers Calculate the average density of a neutron star. Express your answer in kilograms per cubic centimeter to two significant figures.

Answers

The average density of a neutron star which has a mass of about 1.5 Msun is 3.57x10¹⁴ kg/cm³ to two significant figures.

The average density of a neutron star is calculated by dividing the mass of the neutron star by its volume. The formula is given as:-

P = M/V, where P is the density, M is the mass, and V is the volume.

The volume of a sphere is given by the following formula:-

V = 4/3πr³, where r is the radius.

Substituting the given values, we get:-

V = 4/3π(10 km)³ = 4/3π(10,000 m)³ = 4/3π(1x10¹⁰ cm)³ = 4/3π(1x10³⁰ cm³) = 4.19x10³⁰ cm³

Now, we can calculate the density:-

P = M/V = 1.5 Msun / 4.19x10³⁰ cm³ = 3.57x10¹⁴ kg/cm³

Learn more about mass: https://brainly.com/question/25959744

#SPJ11

A 91-kg hockey player on the austin bats team is at rest on the ice if he throws a 4 kg rock at 2.1 m/s. what is the resulting speed of the hockey player in m/s

Answers

это действие является рективным, формула которой такова: m1×v1 = – m2×v2

m1 - масса игрока

m2 - масса шайбы

v1 - скорость игрока

v2 - скорост шайбы.

отсюда, скорост игрокa: v1 = (m2×v2):m1 = 0.092 m/s

Which of the following nuclear fuels does a one solar mass star use over the course of its entire evolution?A. hydrogen and heliumB. hydrogen, helium, carbon, and neonC. hydrogenD. hydrogen, helium, carbon, neon, and oxygenE. hydrogen, helium and carbon

Answers

A one solar mass star uses Hydrogen as nuclear fuel over the course of its entire evolution.

Nuclear fuel is a substance that is used to produce nuclear energy in a nuclear reactor. Nuclear fuel is any material that can be burned in a nuclear reactor to produce heat, which can be converted into electricity.

Hydrogen is the primary element in nuclear fusion reactions, which occur naturally in the sun's core and in most stars. Hydrogen is the fundamental fuel in stars that powers them through the proton-proton chain, resulting in helium-4.

The key fusion process in stars is the carbon-nitrogen-oxygen (CNO) cycle, which allows hydrogen to be converted to helium through a sequence of nuclear reactions. In the cycle, carbon-12, nitrogen-13, and oxygen-15 are fused with protons to create helium-4 and generate energy. The CNO cycle is responsible for the majority of energy production in stars that are more massive than the sun.

Hence, the answer is Hydrogen.

To know more about Nuclear Fusion, refer here:

https://brainly.com/question/12701636#

#SPJ11

true or false compressed air can be used for cleaning as long as it is less than 30 psi

Answers

Answer:

True according to section 6(a) in the OSH act, compressed air can be used when cleaning if it is less than 30 Psi.

when you weigh yourself on a bathroom scale in an elevator moving upward at constant velcoity are the springs in the scale more or less compressed moving downward at constant velocity.T/F

Answers

True. The springs in the scale will be more compressed when the elevator is moving upward at constant velocity. When the elevator is moving downward at a constant velocity, the springs will be less compressed.

When you are in an elevator that is moving upward at a constant velocity and you weigh yourself on a bathroom scale, the springs in the scale will be more compressed because of the additional upward force caused by the motion of the elevator.

Likewise, when you weigh yourself on a bathroom scale in an elevator moving downward at a constant velocity, the springs in the scale are less compressed. This is because the additional force caused by the motion of the elevator is in the opposite direction.

Thus, when the elevator moves upwards with a constant velocity, the scale will give a weight that is more than the actual weight. When the elevator moves downwards with a constant velocity, the scale will give a weight that is less than the actual weight.

Learn more about velocity here:

brainly.com/question/80295?source=archive

#SPJ11

what is he probability of having exactly 10 samples succeed from a binomial random variable, if the sample size is 20, the probability of success is 51%?

Answers

The probability of having exactly 10 samples succeed from a binomial random variable, given a sample size of 20 and a probability of success of 51%, is 0.1011.

To calculate this, we can use the Binomial Probability formula:

P(x;n,p) = (n!/(x!*(n-x)!) * px * qn-x)

where P(x;n,p) is the probability of x successes in n trials with probability p, and q is the probability of failure, equal to 1-p.

In this case, x = 10, n = 20, and p = 0.51, so q = 0.49. Plugging these values into the formula, we get:

P(10;20,0.51) = (20!/(10!*10!) * 0.5110 * 0.4910) = 0.1011

Therefore, the probability of having exactly 10 successes is 0.1011.

for more such questions on Probability

https://brainly.com/question/13604758

#SPJ11

a uniform meter stick supported at the 25 cm mark is in equilibrium when a 1 kg rock is hung from the 0 cm end is the mass of the meterstick greater than, equal to, or less than the mass of the rock?

Answers

The mass of the meter stick is equal to the mass of the rock. This is because a meter stick in equilibrium is balanced, meaning that the weight of the rock on the left side of the meter stick (at 0 cm) is equal to the weight of the meter stick on the right side (at 25 cm).

What is the mass of the meter stick?

When a 1 kg rock is hung from the 0 cm end of a uniform meter stick that is supported at the 25 cm mark and is in equilibrium, the mass of the meter stick is less than the mass of the rock.

A uniform meter stick supported at the 25 cm mark is in equilibrium when a 1 kg rock is hung from the 0 cm end. Since the meter stick is in equilibrium, the net torque acting on it is zero, which means that the meter stick is in rotational equilibrium around the support point at the 25 cm mark.

The gravitational force on the rock acts downward while the force on the meter stick acts upward due to the support point, and the net torque is zero.

As a result, the weight of the meter stick is less than the weight of the rock, since the gravitational force acting on the rock is greater than the gravitational force acting on the meter stick, and the net torque produced by the rock is equal to the net torque produced by the meter stick. The mass of the meter stick is therefore less than the mass of the rock.

Read more about mass here:

https://brainly.com/question/19385703

#SPJ11

the one property of a main-sequence star that determines all its other properties is its: question 1 options: 1) luminosity. 2) temperature. 3) mass. 4) spectral type.

Answers

The one property of a main-sequence star that determines all its other properties is its mass. Mass is the one property of a main-sequence star that determines all its other properties. The correct option is 3.

What is the main sequence star?

A main-sequence star is a star that is in the process of fusing hydrogen to helium in its core. When a star is in this stage, it is in equilibrium, which means that the gravitational pull toward its core is balanced by the energy produced by nuclear fusion in the core. When a star is in equilibrium, the one property that determines all of its other properties is its mass.

The reason for this is because the mass of a star determines how much pressure and temperature are generated in the core, which ultimately determines how much energy is generated and how long it will last.

Other properties like luminosity, temperature, and spectral type all depend on the mass of the star. Therefore, the mass of a main-sequence star is the one property that determines all of its other properties.

Therefore, the correct option is 3.

Read more about main-sequence star here:

https://brainly.com/question/906581

#SPJ11

three forces applied to a trunk that moves leftward by 3.010 m over a frictionless floor. The force magnitudes are F1 = 5.86 N, F2 = 9.180 N, and F3 = 3.850 N, and the indicated angle is θ = 67.8°. During the displacement, what is the net work done on the trunk by the three forces? (Note that there are other forces acting on the block, but we only care about the net work done by these three forces.) And by how much does the kinetic energy of the trunk increase (enter a positive value) or decrease (negative value)?

Answers

The kinetic energy of the trunk increases by ½ mvf² = ½ m(10.65 m/s)²= 71.44 J during the displacement.

Net work = ΔK

W = Fd cosθ

W1 = F1d cosθ = (5.86 N)(3.010 m) cos(67.8°) = 6.99 J

W2 = F2d cosθ = (9.180 N)(3.010 m) cos(67.8°) = 10.97 J

W3 = F3d cosθ = (3.850 N)(3.010 m) cos(67.8°) = 4.58 J

Net work = W1 + W2 + W3 = 6.99 J + 10.97 J + 4.58 J = 22.54 J

Therefore, the net work done on the trunk by the three forces is 22.54 J.

ΔK = ½ mvf² - ½ mvi²

Since the trunk moves a distance of 3.010 m and is initially at rest, we can use the equation:

vf² = 2ad

where a is the acceleration of the trunk, which is given by:

a = ΣF / m

where ΣF is the net force on the trunk, which we can find using:

ΣF = F1 + F2 + F3

ΣF = (5.86 N + 9.180 N + 3.850 N) = 18.89 N

Therefore, the acceleration of the trunk is:

a = ΣF / m = 18.89 N / m

Since the trunk moves leftward, the acceleration is also leftward, so we can use a negative value for a.

Substituting the values for a and d, we get:

vf² = -2(-18.89 N / m)(3.010 m) = 113.51 (m/s)²

Taking the square root, we get:

vf = 10.65 m/s

Therefore, the change in kinetic energy of the trunk is:

ΔK = ½ mvf² - ½ mvi² = ½ m(10.65 m/s)²- 0 = ½ mvf²

Kinetic energy is a type of energy that an object possesses by virtue of its motion. It is defined as the energy an object has due to its motion and is proportional to the mass of the object and the square of its velocity. The formula for kinetic energy is KE = 1/2mv^2, where m is the mass of the object and v is its velocity.

Kinetic energy is a scalar quantity and has units of joules in the International System of Units (SI). It is a fundamental concept in physics and is used to describe many physical phenomena, including the motion of particles, the behavior of gases, and the motion of waves. In many cases, kinetic energy can be transformed into other forms of energy. For example, when a ball is thrown upwards, its kinetic energy is gradually converted into gravitational potential energy as it moves higher and higher.

To learn more about Kinetic energy visit here:

brainly.com/question/26472013

#SPJ4

A building contractor buys 70​% of his cement from supplier A and 30​% from supplier B. A total of 95​% of the bags from A arrive​ undamaged, and a total of 90​% of the bags from B arrive undamaged. Find the probability that a damaged bag is from supplier Upper A.

Answers

The probability that a damaged bag is supplied from supplier A is 53.8%.

There are two suppliers, A and B, from which a building contractor purchases cement in a ratio 70: 30.

The probability of a damaged bag of cement arriving from supplier A will be found in this question.

Bayes' Theorem, which is one of the most important concepts in statistics, will be used to solve this problem.

The following is the formula for Bayes' theorem:

P(A|B) = (P(B|A) x P(A))/P(B)

Where P(A) and P(B) are the probabilities of events A and B occurring, respectively, and P(B|A) is the probability of B given that A has occurred.

Let us suppose that a bag of cement is chosen at random and that it is damaged. We want to determine the probability that the bag was supplied by A.

Let D represent the event that a bag is damaged, and let A represent the event that the bag is supplied by supplier A.

Then, by Bayes' theorem, we have:

P(A|D) = (P(D|A) x P(A))/P(D)

The probability of a bag being damaged given that it was supplied by supplier A is 1 - 0.95 = 0.05, as stated in the problem.

Similarly, the probability of a bag being damaged given that it was supplied by supplier B is 1 - 0.90 = 0.10.

The probability of a bag being supplied by supplier A is 0.70, whereas the probability of a bag being supplied by supplier B is 0.30.

The probability of a bag being damaged is as follows:

P(D) = P(D|A) x P(A) + P(D|B) x P(B)

      = 0.05 x 0.70 + 0.10 x 0.30 = 0.065

Therefore, the probability that a damaged bag was supplied by supplier A is as follows:

P(A|D) = (P(D|A) x P(A))/P(D)

          = (0.05 x 0.70)/0.065 = 0.538

Therefore, there is a 53.8% chance that a damaged bag was supplied by supplier A.

Learn more about probability: https://brainly.com/question/24756209

#SPJ11

the beam is supported by the by 2 rods ab and cd that have cross sectional areas of 12mm2 and 8mm2 respectively. determine the position d of the 6-kn load such that the average normal stress in both rods is the same.

Answers

The average normal stress in both rods is same so the position d of the 6-KN load is 4.8m.

Step by step explanation:

The beam is supported by the by 2 rods AB and CD that have cross sectional areas of 12mm² and 8mm² respectively. The average normal stress in both rods is the same. We need to determine the position d of the 6-KN load.

Normal stress is a type of stress that happens when an object encounters a force perpendicular to the plane of its cross-sectional area. The normal stress is measured in Pascals (Pa).

Normal Stress = F / A

Where, F = Force

A = Area

Position d of the 6-KN load can be calculated as follows: Determine the shear force

V = (w₁ × a₁) + (w₂ × a₂) ...(1)

V = (6 × 2) + (6 × 3)V = 30kN

Normal stresses in rod AB :

Normal Stress = F / A

Normal Stress in AB = (30 × 1000) / (12 × 10^-6)

Normal Stress in AB = 2500000 Pa

Normal stresses in rod CD :

Normal Stress = F / A

Normal Stress in CD = (30 × 1000) / (8 × 10^-6)

Normal Stress in CD = 3750000 Pa

Let's assume the position of the 6 KN load is d metres from the support CD. Therefore the shear force on the rod CD due to the 6-KN load is 6 × d. Therefore the shear force on rod AB is 6 (5 - d).

Now by applying the principle of superposition, the shear force on rod CD due to the 6-KN load is V/2 + 6d and the shear force on rod AB is V/2 - 6(5 - d).

For the average normal stress in both rods to be equal, the normal stress in rod AB should be equal to the normal stress in rod CD.

(V/2 + 6d) / 12 × 10^-6 = (V/2 - 6(5 - d)) / 8 × 10^-6

= V + 72d = 15V - 120d

= 15V - V = 192dV

= 6 KN × 4/3 = 8 KN

Distance from support CD to the position of 6 KN load= d = 4.8 m

Therefore the position d of the 6-KN load is 4.8m.

Learn more about Normal Stress at : https://brainly.com/question/23270001

#SPJ11

A force f = bx 3 acts in the x direction, where the value of b is 3. 7 n/m3. How much work is done by this force in moving an object from x = 0. 00 m to x = 2. 7 m?

Answers

The work done by the force in moving the object from x = 0.00 m to x = 2.7 m is 69.03 J.

To calculate the work done by a force, we can use the following formula:

[tex]$$W = \int F(x) dx$$[/tex]

where F(x) is the force as a function of position, and the integral is taken over the distance the object is moved.

In this case, the force is given by [tex]$F(x) = bx^3 = 3.7x^3$[/tex] [tex]N/m^3[/tex] . The distance the object is moved is from x = 0.00 m to x = 2.7 m. Therefore, we can calculate the work done by the force as follows:

[tex]$$W = \int_{0.00}^{2.7} F(x) dx = \int_{0.00}^{2.7} (3.7x^3) dx $$[/tex]

[tex]$$W = \left[\frac{3.7x^4}{4}\right]_{0.00}^{2.7} = \left[\frac{3.7(2.7^4)}{4}\right] - \left[\frac{3.7(0.00^4)}{4}\right]$$[/tex]

[tex]$$W = 69.03 \text{ J}$$[/tex]

Therefore, the work done by the force in moving the object from x = 0.00 m to x = 2.7 m is 69.03 J.

To learn more about work done:

https://brainly.com/question/30699148

#SPJ4

choose the correct definition of electrical charge.

Answers

The quantity of electrical energy in an object determined by the presence or absence of protons or electrons is described by its electrical charge, which is a fundamental feature of matter.

An object's electrical charge, which describes whether it contains electrons or protons and the amount of electrical energy associated with it as a result, is a fundamental feature of matter. All matter is formed of atoms, which contain positively charged protons, negatively charged electrons, and neutral particles called neutrons. The distribution of these particles determines an object's electrical charge.

Depending on whether an object has a shortage or an abundance of electrons, electrical charge can either be positive or negative. A substance that contains more protons than electrons is positively charged, whereas a substance with more electrons than protons is negatively charged.

Learn more about  electrical charge here:

https://brainly.com/question/30589729

#SPJ4

In raising a 5200-N piano with a pulley system, the workers note that for every 1.5 m of rope pulled downward, the piano rises 0.22 Ideally, find the force that is required to lift the piano. Express your answer to two significant figures and include the appropriate units.

Answers

The force required to lift the piano in the given situation is 753 N.

A pulley is a wheel with a groove that holds a cable or rope in place. The wheel's rotation helps to lift a heavy weight to a higher level. The effort required to move the weight is reduced as a result of this mechanism. One end of the rope is attached to the object to be raised, and the other end is pulled by someone or something.

The pulley is the mechanism that allows a force to be applied in one direction to produce motion in another direction. As a result, a pulley is a tool that enables you to lift an object more easily.

It is given that for every 1.5 m of rope pulled downward, the piano rises 0.22 m. Let x be the force required to lift the piano.

Let's begin by converting 0.22 m to cm:

1 m = 100 cm, so

0.22 m = 0.22 × 100 = 22 cm

Next, we can convert 5200 N to kg.

1 N = 1 kg.m/s^2, so

5200 N = 5200/9.8 = 530.61 kg

x is the force required to lift the piano.

Therefore, we can apply the following formula:

x = (force required)/(distance pulled by the workers)

x = (530.61 kg × 9.8 m/s²)/(1.5 m × 0.22 m) = 753 N. 

Thus, the force required to lift the piano in the given situation is 753 N.

Learn more about Force:

https://brainly.com/question/13370981

#SPJ11

if the leftover energy in the previous problem is 134.9 j (it's not, don't go back and try to use this value) and the mass is 2 kg, what speed (in m/s) does the block have at the bottom of its slide? revisit the definition of ke if needed.

Answers

The speed of the block at the bottom of its slide is 16.4 m/s.

In the previous problem, the kinetic energy of the block was found to be 135 J.

The formula for kinetic energy is

KE = 1/2mv²,

Where:

m is the mass of the object and v is its velocity.

Now we can use the same formula to find the velocity of the block at the bottom of its slide.

KE = 1/2mv²

We know that the mass of the block is 2 kg, and the kinetic energy at the end of the slide is 135 J.

KE = 135 Jm = 2 kg1/2mv² = 135 Jv² = 2(135 J) / 2 kgv² = 270 JV = sqrt(270 J) / 2 kgV = 16.4 m/s

Therefore, the speed of the block at the bottom of its slide is 16.4 m/s.

Learn more about kinetic energy: https://brainly.com/question/8101588

#SPJ11

when the car is parking on the ramp, the breakaway friction is obviously greater than the down-ramp component of the weight of the car. use what you have learned so far, calculate the force required to move the car down the ramp.

Answers

The required force to move a car down a ramp is the total force of the static force and weight force.

The force required to move the car down the ramp is equal to the sum of the static friction and the down-ramp component of the weight of the car. The static friction can be calculated as follows:

  Fstatic = μs • m • g

Where μs is the static friction coefficient of the ramp, m is the mass of the car, and g is the gravitational acceleration.

The down-ramp component of the weight of the car can be calculated as follows:

  Fweight = m • g • sinθ

Where θ is the angle of the ramp.

Therefore, the total force required to move the car down the ramp is equal to the sum of the static friction and the down-ramp component of the weight of the car:

  Ftotal = Fstatic + Fweight

Learn more about static friction at https://brainly.com/question/30031223

#SPJ11

a 3 3-inch candle burns down in 12 hours. if b represents how much of the candle, in inches, has burned away at any time given in hours, t, write a proportional equation for b in terms of t that matches the context.

Answers

The proportional equation for the 3 3-inch candle that burns down in 12 hours in which it represented in terms of b is b/t = 11/4.

Step by step explanation:

We must understand that a 3-inch candle burns down in 12 hours, and that b reflects how much of the candle, in inches, has burned away at any time given in hours t in order to develop a proportional equation for b in terms of t that matches the context supplied.

Using proportionality, we can write that the amount of the candle burned is proportional to the time elapsed. As such:

b/t = k, where k is the constant of proportionality.

The problem states that the 3 3-inch candle burns down in 12 hours, so we can calculate k as follows:

k = b/t = 3 3 / 12 = 11/4.

Now, we can write the proportional equation in terms of t as follows: b/t = 11/4.

Learn more about proportional equation and time at : https://brainly.com/question/14070528

#SPJ11

A 33-inch candle burns down in 12 hours. If b represents how much of the candle, in inches, has burned away at any time given in hours, t, a proportional equation for b in terms of t that matches the context can be found in the following manner-

The length of the candle that burns away is proportional to the time, so we have the equation:b/t = k where k is a constant of proportionality. We don't know the value of k yet.

To find k, we need to use the given information. We know that the candle burns down to a length of 0 inches after 12 hours, which means that 33 - 0 = 33 inches of the candle has burned away. So we can plug in b = 33 and t = 12 and solve for k:

b/t = k

33/12 = k

11/4 = k

Now we have the constant of proportionality, k = 11/4. So the proportional equation for b in terms of t is:b/t = 11/4

Therefore, the proportional equation for b in terms of t that matches the context is b = (11/4)*t.

To learn more about proportional equations refer to: brainly.com/question/24868934

#SPJ11

The electric flux through a spherical surface is4.3×104 N⋅m2/C. What is the net charge enclosed by the surface? The net charge enclosed by the surface isμC. The electric flux through a cubical box34 cmon a side is7.5×103 N⋅m2/C. What is the total charge enclosed by the box? The total charge enclosed by the box isμC

Answers

For the electric flux through a spherical surface is 4.3 x 10⁴ N⋅m²/C, then the net charge enclosed by the surface is μC, and for the electric flux through a cubical box 34 cm on a side is 7.5 x 10³ N⋅m²/C, the total charge enclosed by the box is μC.

The electric flux through a spherical surface is 4.3 x 10⁴ N⋅m²/C.

The net charge is Electric Flux = Charge / Surface Area,

so the net charge enclosed is 4.3 x 10⁴ / (4πr²) where r is the radius of the sphere.

Therefore, the net charge enclosed by the surface is μC.

The electric flux through a cubical box 34 cm on a side is 7.5 x 10³ N⋅m²/C.

The total charge is Electric Flux = Charge / Surface Area,

so the total charge enclosed is 7.5 x 10³ / (6a²)

where a is the length of one side of the cube.

Therefore, the total charge enclosed by the box is μC.

Learn more about electric flux here:

https://brainly.com/question/2664005

#SPJ11

the us buys bombs from russia under a nuclear peace treaty. assume the bombs are 100% u235. each bomb weighs one tonne of u235. by mixing the u235 from one bomb to obtain a total of 40,000 kg of fuel needed by one reactor for startup, how much natural uranium must be used? what is the final enrichment?

Answers

The final enrichment would be 97.5%, which is the amount of U235 in the total fuel, divided by the total weight of the fuel.

What is the amount of natural uranium must be used?

Uranium from one bomb = 1 tons = 1000 kg. Uranium required for one reactor = 40,000 kg Percent enrichment of U-235 in uranium used for bomb = 100%.

Enrichment = (% of U-235 / % of U-238) +1

Natural Uranium contains 0.711% of U-235.

Calculations: As we know that Uranium from one bomb = 1 tonne = 1000 kg.

To obtain a total of 40,000 kg of fuel needed by one reactor for startup, we need to mix 40 bombs. Let's find out the total mass of U-235 present in 40 bombs:

Total mass of U-235 = 1000 × 40 = 40,000 kg.

Enrichment = (% of U-235 / % of U-238) +1

Let the percentage of U-238 = X

Enrichment = (100/ X) + 1

We know that Natural Uranium contains 0.711% of U-235, So the percentage of U-238 in natural uranium will be 99.289%

Let X = 99.289%

Enrichment = (100/ 99.289%) + 1

Enrichment = 1.007%

Thus, the mass of natural uranium used = 40,000/0.007 = 5,71,42,857.14 kg (approx)

Final enrichment = 1.007%

To learn more about the uranium :

https://brainly.com/question/179933

#SPJ11

Other Questions
When an organization moves to a cloud service for IaaS the cost model changes. Which of the following illustrates that cost model?A. Move from an ongoing OPEX model for infrastructure to an ongoing service charge for the life of the infrastructureB. Move from a depreciation model of infrastructure to a leasing model of infrastructure with bundled support and maintenance.C. Move from a CAPEX model for infrastructure to an ongoing OPEX charge with bundled support and ongoing maintenance.D. Move from an OPEX model for infrastructure to an ongoing CAPEX charge with bundled support and ongoing maintenance. The Chernobyl nuclear disaster led to the release of massive radiation, specifically iodine-131 and cesium-137, which has been connected to a variety of environmental problems in the 30 years following the disaster. A meltdown in which of the following structures at a nuclear power plant, such as Chernobyl, would most likely lead to the accidental release of radiation? A.Cooling towerB.TurbineC.GeneratorD.Reactor core although the british won the french and indian war, there were significant challenges ahead. complete the passage to describe some of the issues the british faced after the war. A cyclist rides off from rest, accelerating at a constant rate for 3 minutes until she reaches 40 kmh-1. She then maintains a constant speed for 4 minutes until reaching a hill. She slows down at a constant rate over one minute to 30 kmh-1. then continues at this rate for 10 minutes.At the top of the hill she reduces her speed uniformly and is stationary 2 minutes later.How far has the cyclist travelled? while mary was reading a story about the australian outback adventures of billy and his dog, she had no problem visualizing the arid countryside, the unusual animals that lived there, and the various people that billy and his dog met in their journeys. mary is using: What is the measure of angle ABC? pls help fast to defuse fully a workplace situation created by cyber incivility, which of the following actions should you take? The industry where you work has a turnover rate of 9. The company you work for is forecasting sales of $85,000 next year. If the annual cost of goods sold is 55% of sales, what is the cost for inventory and how many months' supply should be kept on hand? biconditional of that of two angles are supplementary,then the sum of their measures is 180 kunkel, applebaum, and nelson name which of the following as an ideological value that critics think would be harmed by paid family caregiving? Please label the following statements as T (true) or F (false).1. Loading errors are systematic uncertainty.2. Resolution uncertainty is usually treated as random uncertainty.3. The mass balance in the lab has a resolution of 1 g.4. The Fluke 45 multi-meter reads faithfully at a frequency of 2 Hz.5. For the function generator in the lab, a range under 20 kHz range button with a dial position 1.2 gives a wave with frequency of about 12 kHz.6. Regression analysis is limited to linear regression.7. In the Displacement and Strain lab, the surface (fiber) stress is measured by the strain gage.8. A gage factor of 2.0 is used in the strain gage in the Displacement and Strain lab.9. The proximity probe is used to verify the Euler-Berboulli Beam theory while the strain gage is used to verify Hooks law in our Displacement and Strain lab.10. The proximity probe in the lab is powered by 15 VAC. 2526-kg elevator moves with a downward acceleration of 2.00 m/s2. what is the tension in the cable that supports the elevator? assume the elevator is supported by a single cable. forces exerted by the guide rails and air resistance is negligible A-1 chemical supply pays sam sanchez a $1950 monthly salary plus a 3% commission on merchandise he sells each month. assume Sam's sales were $46,400 for last month According to the ASHRAE standard, which of the following describes how the discharge of a pressure relief value or fusible plug must be installed?15 feet above the ground level not less than 20 feet from any window, ventilation opening or exit in any building. which of the following statements is true? a. all of the above. b. an elif statement must always be followed by an else statement. c. an elif statement must always be followed by an if statement d. an elif statement may or may not have an else statement following it. Write the equation of the circle in standard form. Then identify the center and radius of the circle. X2 + y2 10x + 8y + 37 = 0 Odysseus is finally asked about his story. Before he even gets into the story, what does he tell his audience about himself? Who does he blame for his misfortune? What does this suggest about his character? Distribution to heirs of property that belonged to a person who died without making a will. is called? _____ a government in which the sovereignty is given to the people._____ the Supreme legislature of Great Britain._____ members of the English political party succeeding the Cavaliers who wanted a strong king._____ members of the anti-monarch, pro-Parliament party in England._____ Members of the English political party who wanted the real power in Parliament._____ a supporter of Charles the 1st. Given a square with area a, you can use the formula P = 4a to find theperimeter P of the square. Find the perimeter of a square that has an area of 64 m.